Для цитирования:
Байбурдов Т. А., Шмаков С. Л. Современные методы контролируемой радикальной полимеризации для получения разветвлённых полимеров акриламида, акриловой кислоты и (мет)акрилатов // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2022. Т. 22, вып. 3. С. 251-261. DOI: 10.18500/1816-9775-2022-22-3-251-261
Современные методы контролируемой радикальной полимеризации для получения разветвлённых полимеров акриламида, акриловой кислоты и (мет)акрилатов
Проведён поиск и анализ научной литературы на английском языке за 2005–2020 гг., посвящённой методам получения разветвлённых полимеров и сополимеров акриламида, акриловой кислоты и (мет)акрилатов в целях получения новых материалов с ценными свойствами. Выявлено, что для этого в основном применяются современные методы контролируемой радикальной полимеризации – радикальная полимеризация по механизму с переносом атома (РППА), полимеризация с обратимой передачей цепи по механизму присоединения-фрагментации (ОПЦ) и полимеризация с переносом группы (ППГ). Агентами передачи цепи при ОПЦ в большинстве случаев являлись оригинальные синтезированные соединения. В зависимости от порядка синтеза различают подходы «ядро–лучи» и «лучи–ядро». Оценена перспективность применения разветвлённых полимеров акриламида, акриловой кислоты и (мет)акрилатов для биоконъюгирования, иммобилизации поверхности, тканевой инженерии, повышения нефтеотдачи, флокуляции.
- Байбурдов Т. А., Шмаков С. Л. Разветвлённые полимеры N-изопропилакриламида: обзор англоязычной литературы за 2005–2020 годы // Известия Саратовского университета. Новая серия. Серия : Химия. Биология. Экология. 2021. Т. 21, вып. 1. С. 12–22. https://doi.org/10.18500/1816-9775-2021-21-1-12-22
- Wang W.-J., Wang D., Li B.-G., Zhu S. Synthesis and Characterization of Hyperbranched Polyacrylamide Using Semibatch Reversible Addition−Fragmentation Chain Transfer (RAFT) Polymerization // Macromolecules. 2010. Vol. 43. P. 4062–4069. https://doi. org/10.1021/ma100224v
- Wang D., Wang W.-J., Li B.-G., Zhu S. Semibatch RAFT polymerization for branched polyacrylamide production: Effect of divinyl monomer feeding policies // AIChE J. 2012. Vol. 59. P. 1322–1333. https://doi. org/10.1002/aic.13890
- Klemm B., Picchioni F., Mastrigt F. van, Raffa P. Starlike Branched Polyacrylamides by RAFT Polymerization. Part I: Synthesis and Characterization // ACS Omega. 2018. Vol. 3. P. 18762–18770. https://doi. org/10.1021/acsomega.8b03178
- Wever D. A. Z., Polgar L. M., Stuart M. C. A., Picchioni F., Broekhuis A. A. Polymer molecular architecture as a tool for controlling the rheological properties of aqueous polyacrylamide solutions for enhanced oil recovery // Ind. Eng. Chem. Res. 2013. Vol. 52. P. 16993–17005. https://doi.org/10.1021/ie403045
- Wever D. A. Z., Picchioni F., Broekhuis A. A. Branched polyacrylamides: Synthesis and effect of molecular architecture on solution rheology // Eur. Polym. J. 2013. Vol. 49. P. 3289–3301. https://doi.org/10.1016/j. eurpolymj.2013.06.036
- Dao V. H., Cameron N. R., Saito K. Synthesis of UHMW Star-Shaped AB Block Copolymers and Their Flocculation Effi ciency in High-Ionic-Strength Environments // Macromolecules. 2019. Vol. 52, № 20. P. 7613–7624. https://doi.org/10.1021/acs.macromol.9b01290
- Vo C.-D., Rosselgong J., Armes S. P., Billingham N. C. RAFT synthesis of branched acrylic copolymers // Macromolecules. 2007. Vol. 40. P. 7119–7125. https:// doi.org/10.1021/ma0713299
- Boschmann D., Vana P. Z-RAFT star polymerizations of acrylates: Star coupling via intermolecular chain transfer to polymer // Macromolecules. 2007. Vol. 40. P. 2683–2693. https://doi.org/10.1021/ma0627626
- Chen Y., Fuchise K., Narumi A., Kawaguchi S., Satoh T., Kakuchi T. Core-First Synthesis of Three-, Four-, and Six-Armed Star-Shaped Poly(methyl methacrylate)s by Group Transfer Polymerization Using Phosphazene Base // Macromolecules. 2011. Vol. 44. P. 9091–9098. https://doi.org/10.1021/ma202103d
- Kikuchi S., Chen Y., Fuchise K., Takada K., Kitakado J., Sato S., Satoh T., Kakuchi T. Thermoresponsive properties of 3-, 4-, 6-, and 12-armed star-shaped poly[2-(dimethylamino)ethyl methacrylate]s prepared by core-fi rst group transfer polymerization // Polym. Chem. 2014. Vol. 5. P. 4701–4709. https://doi. org/10.1039/c4py00290c
- Haldar U., Roy S. G., De P. POSS tethered hybrid “inimer” derived hyperbranched and star-shaped polymers via SCVP-RAFT technique // Polymer. 2016. Vol. 97. P. 113–121. https://doi.org/10.1016/j. polymer.2016.05.027
- Sinek A., Kupczak M., Mielanґczyk A., Lemanowicz M., Yusa S., Neugebauer D., Gierczycki A. Temperature and pH-Dependent Response of Poly(Acrylic Acid) and Poly(Acrylic Acid-co-Methyl Acrylate) in Highly Concentrated Potassium Chloride Aqueous Solutions // Polymers. 2020. Vol. 12. P. 486. https://doi.org/10.3390/ polym12020486
- Chauhana K., Patiyala P., Chauhanb G. S., Sharma P. Star-shaped polymers of bio-inspired algae core and poly(acrylamide) and poly(acrylic acid) as arms in dissolution of silica/silicate // Water Research. 2014. Vol. 56. P. 225–233. https://doi.org/10.1016/j. watres.2014.03.009