Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

For citation:

Bayburdov T. А., Shmakov S. L. Modern methods of controlled radical polymerization for obtaining branched polymers of acrylamide, acrylic acid and (met)acrylates. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 3, pp. 251-261. DOI: 10.18500/1816-9775-2022-22-3-251-261

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 213)
Article type: 
66.095.26-922.3: 678.745.842”2005/2020”

Modern methods of controlled radical polymerization for obtaining branched polymers of acrylamide, acrylic acid and (met)acrylates

Bayburdov Telman А., Saratov State University
Shmakov Sergei L., Saratov State University

 A search and analysis has been carried out of English-language 2005–2020 scientifi c literature devoted to methods of obtaining branched (co)polymers of acrylamide, acrylic acid and (met)acrylates in order to obtain novel materials with valuable properties. It has been found that modern methods of controlled radical polymerization are mainly used for this purpose, namely, atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer polymerization (RAFT) and group transfer polymerization (GTP). In most cases, original synthesized compounds were the chain transfer agents in RAFT. Depending on the order of synthesis, a distinction is made between the “core–arms” and “arms–core” approaches. The prospects of using branched polymers of acrylamide, acrylic acid and (met)acrylates for bioconjugation, surface immobilization, tissue engineering, oil production enhancement, and fl occulation are estimated.

  1. Байбурдов Т. А., Шмаков С. Л. Разветвлённые полимеры N-изопропилакриламида: обзор англоязычной литературы за 2005–2020 годы // Известия Саратовского университета. Новая серия. Серия : Химия. Биология. Экология. 2021. Т. 21, вып. 1. С. 12–22. https://doi.org/10.18500/1816-9775-2021-21-1-12-22
  2. Wang W.-J., Wang D., Li B.-G., Zhu S. Synthesis and Characterization of Hyperbranched Polyacrylamide Using Semibatch Reversible Addition−Fragmentation Chain Transfer (RAFT) Polymerization // Macromolecules. 2010. Vol. 43. P. 4062–4069. https://doi. org/10.1021/ma100224v
  3. Wang D., Wang W.-J., Li B.-G., Zhu S. Semibatch RAFT polymerization for branched polyacrylamide production: Effect of divinyl monomer feeding policies // AIChE J. 2012. Vol. 59. P. 1322–1333. https://doi. org/10.1002/aic.13890
  4. Klemm B., Picchioni F., Mastrigt F. van, Raffa P. Starlike Branched Polyacrylamides by RAFT Polymerization. Part I: Synthesis and Characterization // ACS Omega. 2018. Vol. 3. P. 18762–18770. https://doi. org/10.1021/acsomega.8b03178
  5. Wever D. A. Z., Polgar L. M., Stuart M. C. A., Picchioni F., Broekhuis A. A. Polymer molecular architecture as a tool for controlling the rheological properties of aqueous polyacrylamide solutions for enhanced oil recovery // Ind. Eng. Chem. Res. 2013. Vol. 52. P. 16993–17005. https://doi.org/10.1021/ie403045
  6. Wever D. A. Z., Picchioni F., Broekhuis A. A. Branched polyacrylamides: Synthesis and effect of molecular architecture on solution rheology // Eur. Polym. J. 2013. Vol. 49. P. 3289–3301. https://doi.org/10.1016/j. eurpolymj.2013.06.036
  7. Dao V. H., Cameron N. R., Saito K. Synthesis of UHMW Star-Shaped AB Block Copolymers and Their Flocculation Effi ciency in High-Ionic-Strength Environments // Macromolecules. 2019. Vol. 52, № 20. P. 7613–7624. https://doi.org/10.1021/acs.macromol.9b01290
  8. Vo C.-D., Rosselgong J., Armes S. P., Billingham N. C. RAFT synthesis of branched acrylic copolymers // Macromolecules. 2007. Vol. 40. P. 7119–7125. https:// doi.org/10.1021/ma0713299
  9. Boschmann D., Vana P. Z-RAFT star polymerizations of acrylates: Star coupling via intermolecular chain transfer to polymer // Macromolecules. 2007. Vol. 40. P. 2683–2693. https://doi.org/10.1021/ma0627626 
  10. Chen Y., Fuchise K., Narumi A., Kawaguchi S., Satoh T., Kakuchi T. Core-First Synthesis of Three-, Four-, and Six-Armed Star-Shaped Poly(methyl methacrylate)s by Group Transfer Polymerization Using Phosphazene Base // Macromolecules. 2011. Vol. 44. P. 9091–9098. https://doi.org/10.1021/ma202103d
  11. Kikuchi S., Chen Y., Fuchise K., Takada K., Kitakado J., Sato S., Satoh T., Kakuchi T. Thermoresponsive properties of 3-, 4-, 6-, and 12-armed star-shaped poly[2-(dimethylamino)ethyl methacrylate]s prepared by core-fi rst group transfer polymerization // Polym. Chem. 2014. Vol. 5. P. 4701–4709. https://doi. org/10.1039/c4py00290c
  12. Haldar U., Roy S. G., De P. POSS tethered hybrid “inimer” derived hyperbranched and star-shaped polymers via SCVP-RAFT technique // Polymer. 2016. Vol. 97. P. 113–121. https://doi.org/10.1016/j. polymer.2016.05.027
  13. Sinek A., Kupczak M., Mielanґczyk A., Lemanowicz M., Yusa S., Neugebauer D., Gierczycki A. Temperature and pH-Dependent Response of Poly(Acrylic Acid) and Poly(Acrylic Acid-co-Methyl Acrylate) in Highly Concentrated Potassium Chloride Aqueous Solutions // Polymers. 2020. Vol. 12. P. 486. https://doi.org/10.3390/ polym12020486
  14. Chauhana K., Patiyala P., Chauhanb G. S., Sharma P. Star-shaped polymers of bio-inspired algae core and poly(acrylamide) and poly(acrylic acid) as arms in dissolution of silica/silicate // Water Research. 2014. Vol. 56. P. 225–233. https://doi.org/10.1016/j. watres.2014.03.009