Для цитирования:
Кондюрина Н. К., Федоненко Ю. П., Сигида Е. Н., Коннова С. А. Активность липополисахарида типового штамма Azospirillum palustre B2 в отношении проростков пшеницы (Triticum aestivum L.) // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2024. Т. 24, вып. 1. С. 67-75. DOI: 10.18500/1816-9775-2024-24-1-67-75, EDN: DILUUQ
Активность липополисахарида типового штамма Azospirillum palustre B2 в отношении проростков пшеницы (Triticum aestivum L.)
Липополисахарид – основной структурный компонент внешней мембраны грамотрицательных бактерий, который может также входить в состав экстраклеточных полимерных субстанций. Липополисахариды бактерий, стимулирующих рост и развитие растений, относятся к группе молекул, формирующих микроб-ассоциированный молекулярный паттерн (microbe-associated molecular pattern, MAMP). Эти гликоконъюгаты симбиотических, равно как и фитопатогенных бактерий, индуцируют активацию иммунных реакций у растений. Однако уровень ответного отклика растений при воздействии липополисахаридов симбионтов существенно отличается, в том числе благодаря их структурным особенностям, позволяющим обходить или ослаблять реакции врожденного фитоиммунитета. Мы приводим результаты анализа ответных реакций проростков пшеницы Triticum aestivum L. после воздействия липополисахарида ассоциативных бактерий Azospirillum palustre B2(Т). Инкубация проростков пшеницы в присутствии липополисахарида A. palustre B2 приводила к активации ростовых процессов растений, выражающейся в увеличении длины побегов, корней, площади первого листа, а также изменению содержания пигментов в листьях
- Cunha E. T. da, Pedrolo A. M., Arisi A. C. M. Effects of sublethal stress application on the survival of bacterial inoculants: A systematic review // Arch. Microbiol. 2023. Vol. 205, iss. 5. Article number 190. https://doi. org/10.1007/s00203-023-03542-8
- Bhadrecha P., Singh S., Dwibedi V. ‘A plant’s major strength in rhizosphere’: The plant growth promoting rhizobacteria // Arch. Microbiol. 2023. Vol. 205. Article number 165. https://doi.org/10.1007/s00203-023-03502-2
- Rodríguez-Navarro D. N., Dardanelli M. S., Ruíz-Saínz J. E. Attachment of bacteria to the roots of higher plants // FEMS Microbiol. Lett. 2007. Vol. 272, iss. 2. P. 127–136. https://doi.org/10.1111/j.1574-6968.2007.00761.x
- Федоненко Ю. П., Коннова С. А., Сигида Е. Н. Гликополимеры ассоциативных микроорганизмов: фундаментальные и прикладные аспекты / под ред. В. В. Игнатова. Саратов : Изд-во Сарат. ун-та, 2018. 128 с.
- Raaijmakers J. M., Vlami M., De Souza J. T. Antibiotic production by bacterial biocontrol agents // Antonie van Leeuwenhoek. 2002. Vol. 81. P. 537–547. https://doi.org/10.1023/A:1020501420831
- Gureeva M. V., Gureev A. P. Molecular Mechanisms determining the role of bacteria from the genus Azospirillum in plant adaptation to damaging environmental factors // Int. J. Mol. Sci. 2023. Vol. 24, iss. 11. Article number 9122. https://doi.org/10.3390/ijms24119122
- Федоненко Ю. П., Егоренкова И. В., Коннова С. А., Игнатов В. В. Участие липополисахаридов азоспирилл во взаимодействии с поверхностью корней пшеницы // Микробиология. 2001. Т. 70, № 3. С. 384–390.
- Boyko A. S., Konnova S. A., Fedonenko Yu. P., Zdorovenko E. L., Smol’kina O. N., Kachala V. V., Ignatov V. V. Structural and functional peculiarities of the lipopolysaccharide of Azospirillum brasilense SR55 isolated from the roots of Triticum durum // Microbial. Res. 2011. Vol. 166. P. 585–593. https://doi.org/10.1016/j.micres.2011.01.002
- Sigida E., Shashkov A., Shelud’ko A., Zdorovenko E., Toukach P. V., Konnova S., Fedonenko Yu., Knirel Yu. Structural studies of O-specifi c polysaccharide(s) and biological activity toward plants of the lipopolysaccharide from Azospirillum brasilense SR8 // Int. J. Biol. Macromol. 2019. Vol. 126. P. 246–253. https://doi. org/10.1016/j.ijbiomac.2018.12.229
- Evseeva N. V., Matora L. Y., Burygin G. L., Dmitrienko V. V., Shchyogolev S. Y. Effect of Azospirillum brasilense Sp245 lipopolysaccharide on the functional activity of wheat root meristematic cells // Plant Soil. 2011. Vol. 346. P. 181–188. https://doi.org/10.1007/s11104- 011-0808-9
- Evseeva N. V., Tkachenko O. V., Burygin G. L., Matora L. Y., Lobachev Y. V., Shchyogolev S. Y. Effect of bacterial lipopolysaccharides on morphogenetic activity in wheat somatic calluses // World J. Microbiol. Biotechnol. 2018. Vol. 34, iss. 3. https://doi.org/10.1007/ s11274-017-2386-3
- Fedonenko Y. P., Sigida E. N., Konnova S. A., Ignatov V. V. Structure and serology of O-antigens of nitrogenfi xing rhizobacteria of the genus Azospirillum // Russ. Chem. Bull. 2015. Vol. 64, iss. 5. P. 1024–1031. https:// doi.org/10.1007/s11172-015-0971-x
- Tkachenko O. V., Burygin G. L., Evseeva N. V., Fedonenko Y. P., Matora L. Y., Lobachev Y. V., Shchyogolev S. Y. Morphogenesis of wheat calluses treated with Azospirillum lipopolysaccharides // Plant Cell Tiss. Organ. Cult. 2021. Vol. 147. P. 147–155. https://doi.org/10.1007/s11240-021-02114-2
- Méndez-Gómez M., Castro-Mercado E., Alexandre G., García-Pineda E. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction // Protoplasma. 2016. Vol. 253. P. 477–486. https://doi.org/10.1007/s00709-015-0826-1
- Vallejo-Ochoa J., López-Marmolejo M., HernándezEsquivel A. A., Méndez-Gómez M., Suárez-Soria L. N., Castro-Mercado E., García-Pineda E. Early plant growth and biochemical responses induced by Azospirillum brasilense Sp245 lipopolysaccharides in wheat (Triticum aestivum L.) seedlings are attenuated by procyanidin B2 // Protoplasma. 2018. Vol. 255. P. 685–694. https://doi.org/10.1007/s00709-017-1180-2
- Hernaández-Esquivel A. A., Castro-Mercado E., Valencia-Cantero E., Alexandre G., García-Pineda E. Application of Azospirillum brasilense lipopolysaccharides to promote early wheat plant growth and analysis of related biochemical responses // Front. Sustain. Food Syst. 2020. Vol. 4. Article number 579976. https://doi.org/10.3389/fsufs.2020.579976
- Tikhonova E. N., Grouzdev D. S., Kravchenko I. K. Azospirillum palustre sp. nov., a methylotrophic nitrogenfi xing species isolated from raised bog // Int. J. Syst. Evolut. Microbiol. 2019. Vol. 69, iss. 9. P. 2787–2793. https://doi.org/10.1099/ijsem.0.003560
- Сигида Е. Н., Гринёв В. С., Здоровенко Э. Л., Дмитренок А. С., Бурыгин Г. Л., Кондюрина Н. К., Коннова С. А., Федоненко Ю. П. Характеристика структуры и генов биосинтеза О-антигенов Azospirillum zeae N7(T), Azospirillum melinis TMCY 0552(T) и Azospirillum palustre B2(T) // Биоорг. химия. 2022. Т. 48, № 3. С. 302–312. https://doi.org/10.31857/ S0132342322030174
- Konnova S. A., Makarov O. E., Skvortsov I. M., Ignatov V. V. Isolation, fractionation and some properties of polysaccharides produced in a bound form by Azospirillum brasilense and their possible involvement in Azospirillum-wheat root interactions // FEMS Microbiol. Lett. 1994. Vol. 118. P. 93–99. https://doi. org/10.1111/j.1574-6968.1994.tb06809.x
- Кульшин В. А., Яковлев А. П., Аваева С. Н., Дмитриев Б. А. Улучшенный метод выделения липополисахаридов из грамотрицательных бактерий // Молекулярная генетика, микробиология и вирусология. 1987. № 5. C. 44–46
- Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stain polyacrylamide gels // J. Bacteriol. 1983. Vol. 154. P. 269–277. https://doi.org/10.1128/ jb.154.1.269-277.1983
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels // Anal. Biochem. 1982. Vol. 119. P. 115–119. https://doi.org/10.1016/0165-022X(93)90024-I
- Коннова С. А., Скворцов И. М., Макаров О. Е., Прохорова Р. Н., Рогова Т. А., Игнатов В. В. Полисахаридные комплексы выделяемые Azospirillum brasilense и их возможная роль во взаимодействии бактерий с корнями пшеницы // Микробиология. 1995. Т. 64, № 6. С. 762–768.
- Wellburn A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution // J. Plant Physiol. 1994. Vol. 144. P. 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2
- Дорофееева М. М., Бонецкая С. А. Сравнительный анализ некоторых классических и современных методик определения площади листовой поверхности // Растительные ресурсы. 2020. Т. 56, № 2. С. 182–192. https://doi.org/10.31857/S0033994620020041
- Luo X., Wu W., Liang Y., Xu N., Wang Z., Zou H., Liu J. Tyrosine phosphorylation of the lectin receptor-like kinase LORE regulates plant immunity // EMBO J. 2020. Vol. 39, iss. 4. Article number e102856. https:// doi.org/10.15252/embj.2019102856
- Bashan Y., Singh M., Levanony H. Contribution of Azospirillum brasilense Сd to growth of tomato seedlings is not through nitrogen fi xation // Can. J. Bot. 1989. Vol. 67, iss. 8. P. 2429–2434. https://doi.org/10.1139/b89-312
- Волкогон В. В., Димова С. Б., Мамчур А. Е. Особенности взаимоотношений бактерий рода Azospirillum с растениями картофеля, культивируемыми in vitro // Сільськогосподарська мікробіологія. 2005. № 3.