Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Kondyurina N. K., Fedonenko Y. P., Sigida E. N., Konnova S. A. Effect of Azospirillum palustre B2 lipopolysaccharide on wheat seedlings (Triticum aestivum L.). Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2024, vol. 24, iss. 1, pp. 67-75. DOI: 10.18500/1816-9775-2024-24-1-67-75, EDN: DILUUQ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 48)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
577.114.083
EDN: 
DILUUQ

Effect of Azospirillum palustre B2 lipopolysaccharide on wheat seedlings (Triticum aestivum L.)

Autors: 
Kondyurina Natalya K., Saratov State University
Fedonenko Yulia P., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Sigida Elena N., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Konnova Svetlana A., Saratov State University
Abstract: 

Lipopolysaccharide is the main structural component of the outer membrane of Gram-negative bacteria, which can also be a part of extracellular polymeric substances. Lipopolysaccharides of bacteria that stimulate the growth and development of plants belong to the group of molecules that form a microbe-associated molecular pattern (MAMP). These glycoconjugates of both symbiotic and phytopathogenic bacteria induce the activation of immune responses in plants. However, the level of plant response under the infl uence of symbiont lipopolysaccharides diff ers signifi cantly, also due to their structural features, which make it possible to bypass or weaken the reactions of innate autoimmunity. In this paper, we present the results of the analysis of the reactions of wheat seedlings Triticum aestivum L. after incubation with lipopolysaccharide of associative bacteria Azospirillum palustre B2(T). Incubation of wheat seedlings in the presence of A. palustre B2 lipopolysaccharide for three days led to the activation of plant growth processes, namely an increase in the length of shoots, roots, the area of the fi rst leaf, and a change in the content of pigments in the leaves.

Reference: 
  1. Cunha E. T. da, Pedrolo A. M., Arisi A. C. M. Effects of sublethal stress application on the survival of bacterial inoculants: A systematic review // Arch. Microbiol. 2023. Vol. 205, iss. 5. Article number 190. https://doi. org/10.1007/s00203-023-03542-8
  2. Bhadrecha P., Singh S., Dwibedi V. ‘A plant’s major strength in rhizosphere’: The plant growth promoting rhizobacteria // Arch. Microbiol. 2023. Vol. 205. Article number 165. https://doi.org/10.1007/s00203-023-03502-2
  3. Rodríguez-Navarro D. N., Dardanelli M. S., Ruíz-Saínz J. E. Attachment of bacteria to the roots of higher plants // FEMS Microbiol. Lett. 2007. Vol. 272, iss. 2. P. 127–136. https://doi.org/10.1111/j.1574-6968.2007.00761.x
  4. Федоненко Ю. П., Коннова С. А., Сигида Е. Н. Гликополимеры ассоциативных микроорганизмов: фундаментальные и прикладные аспекты / под ред. В. В. Игнатова. Саратов : Изд-во Сарат. ун-та, 2018. 128 с.
  5. Raaijmakers J. M., Vlami M., De Souza J. T. Antibiotic production by bacterial biocontrol agents // Antonie van Leeuwenhoek. 2002. Vol. 81. P. 537–547. https://doi.org/10.1023/A:1020501420831
  6. Gureeva M. V., Gureev A. P. Molecular Mechanisms determining the role of bacteria from the genus Azospirillum in plant adaptation to damaging environmental factors // Int. J. Mol. Sci. 2023. Vol. 24, iss. 11. Article number 9122. https://doi.org/10.3390/ijms24119122
  7. Федоненко Ю. П., Егоренкова И. В., Коннова С. А., Игнатов В. В. Участие липополисахаридов азоспирилл во взаимодействии с поверхностью корней пшеницы // Микробиология. 2001. Т. 70, № 3. С. 384–390.
  8. Boyko A. S., Konnova S. A., Fedonenko Yu. P., Zdorovenko E. L., Smol’kina O. N., Kachala V. V., Ignatov V. V. Structural and functional peculiarities of the lipopolysaccharide of Azospirillum brasilense SR55 isolated from the roots of Triticum durum // Microbial. Res. 2011. Vol. 166. P. 585–593. https://doi.org/10.1016/j.micres.2011.01.002
  9. Sigida E., Shashkov A., Shelud’ko A., Zdorovenko E., Toukach P. V., Konnova S., Fedonenko Yu., Knirel Yu. Structural studies of O-specifi c polysaccharide(s) and biological activity toward plants of the lipopolysaccharide from Azospirillum brasilense SR8 // Int. J. Biol. Macromol. 2019. Vol. 126. P. 246–253. https://doi. org/10.1016/j.ijbiomac.2018.12.229
  10. Evseeva N. V., Matora L. Y., Burygin G. L., Dmitrienko V. V., Shchyogolev S. Y. Effect of Azospirillum brasilense Sp245 lipopolysaccharide on the functional activity of wheat root meristematic cells // Plant Soil. 2011. Vol. 346. P. 181–188. https://doi.org/10.1007/s11104- 011-0808-9
  11. Evseeva N. V., Tkachenko O. V., Burygin G. L., Matora L. Y., Lobachev Y. V., Shchyogolev S. Y. Effect of bacterial lipopolysaccharides on morphogenetic activity in wheat somatic calluses // World J. Microbiol. Biotechnol. 2018. Vol. 34, iss. 3. https://doi.org/10.1007/ s11274-017-2386-3
  12. Fedonenko Y. P., Sigida E. N., Konnova S. A., Ignatov V. V. Structure and serology of O-antigens of nitrogenfi xing rhizobacteria of the genus Azospirillum // Russ. Chem. Bull. 2015. Vol. 64, iss. 5. P. 1024–1031. https:// doi.org/10.1007/s11172-015-0971-x
  13. Tkachenko O. V., Burygin G. L., Evseeva N. V., Fedonenko Y. P., Matora L. Y., Lobachev Y. V., Shchyogolev S. Y. Morphogenesis of wheat calluses treated with Azospirillum lipopolysaccharides // Plant Cell Tiss. Organ. Cult. 2021. Vol. 147. P. 147–155. https://doi.org/10.1007/s11240-021-02114-2
  14. Méndez-Gómez M., Castro-Mercado E., Alexandre G., García-Pineda E. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction //  Protoplasma. 2016. Vol. 253. P. 477–486. https://doi.org/10.1007/s00709-015-0826-1
  15. Vallejo-Ochoa J., López-Marmolejo M., HernándezEsquivel A. A., Méndez-Gómez M., Suárez-Soria L. N., Castro-Mercado E., García-Pineda E. Early plant growth and biochemical responses induced by Azospirillum brasilense Sp245 lipopolysaccharides in wheat (Triticum aestivum L.) seedlings are attenuated by procyanidin B2 // Protoplasma. 2018. Vol. 255. P. 685–694. https://doi.org/10.1007/s00709-017-1180-2
  16. Hernaández-Esquivel A. A., Castro-Mercado E., Valencia-Cantero E., Alexandre G., García-Pineda E. Application of Azospirillum brasilense lipopolysaccharides to promote early wheat plant growth and analysis of related biochemical responses // Front. Sustain. Food Syst. 2020. Vol. 4. Article number 579976. https://doi.org/10.3389/fsufs.2020.579976
  17. Tikhonova E. N., Grouzdev D. S., Kravchenko I. K. Azospirillum palustre sp. nov., a methylotrophic nitrogenfi xing species isolated from raised bog // Int. J. Syst. Evolut. Microbiol. 2019. Vol. 69, iss. 9. P. 2787–2793. https://doi.org/10.1099/ijsem.0.003560 
  18. Сигида Е. Н., Гринёв В. С., Здоровенко Э. Л., Дмитренок А. С., Бурыгин Г. Л., Кондюрина Н. К., Коннова С. А., Федоненко Ю. П. Характеристика структуры и генов биосинтеза О-антигенов Azospirillum zeae N7(T), Azospirillum melinis TMCY 0552(T) и Azospirillum palustre B2(T) // Биоорг. химия. 2022. Т. 48, № 3. С. 302–312. https://doi.org/10.31857/ S0132342322030174
  19. Konnova S. A., Makarov O. E., Skvortsov I. M., Ignatov V. V. Isolation, fractionation and some properties of polysaccharides produced in a bound form by Azospirillum brasilense and their possible involvement in Azospirillum-wheat root interactions // FEMS Microbiol. Lett. 1994. Vol. 118. P. 93–99. https://doi. org/10.1111/j.1574-6968.1994.tb06809.x
  20. Кульшин В. А., Яковлев А. П., Аваева С. Н., Дмитриев Б. А. Улучшенный метод выделения липополисахаридов из грамотрицательных бактерий // Молекулярная генетика, микробиология и вирусология. 1987. № 5. C. 44–46
  21. Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stain polyacrylamide gels // J. Bacteriol. 1983. Vol. 154. P. 269–277. https://doi.org/10.1128/ jb.154.1.269-277.1983
  22. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels // Anal. Biochem. 1982. Vol. 119. P. 115–119. https://doi.org/10.1016/0165-022X(93)90024-I
  23. Коннова С. А., Скворцов И. М., Макаров О. Е., Прохорова Р. Н., Рогова Т. А., Игнатов В. В. Полисахаридные комплексы выделяемые Azospirillum brasilense и их возможная роль во взаимодействии бактерий с корнями пшеницы // Микробиология. 1995. Т. 64, № 6. С. 762–768.
  24. Wellburn A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution // J. Plant Physiol. 1994. Vol. 144. P. 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2
  25. Дорофееева М. М., Бонецкая С. А. Сравнительный анализ некоторых классических и современных методик определения площади листовой поверхности // Растительные ресурсы. 2020. Т. 56, № 2. С. 182–192. https://doi.org/10.31857/S0033994620020041
  26. Luo X., Wu W., Liang Y., Xu N., Wang Z., Zou H., Liu J. Tyrosine phosphorylation of the lectin receptor-like kinase LORE regulates plant immunity // EMBO J. 2020. Vol. 39, iss. 4. Article number e102856. https:// doi.org/10.15252/embj.2019102856
  27. Bashan Y., Singh M., Levanony H. Contribution of Azospirillum brasilense Сd to growth of tomato seedlings is not through nitrogen fi xation // Can. J. Bot. 1989. Vol. 67, iss. 8. P. 2429–2434. https://doi.org/10.1139/b89-312
  28. Волкогон В. В., Димова С. Б., Мамчур А. Е. Особенности взаимоотношений бактерий рода Azospirillum с растениями картофеля, культивируемыми in vitro // Сільськогосподарська мікробіологія. 2005. № 3.
Received: 
08.09.2023
Accepted: 
17.11.2023
Published: 
29.04.2024
Short text (in English):
(downloads: 41)