Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

Full text:
(downloads: 149)
Article type: 

Hormonal Regulation of Morphogenesis in the Culture of Mature Embryo in the Maize Parthenogenetic Line АТТМ (bm, wx, y)

Humood Buthaina M. H., Saratov State University
Yudakova Olga Ivanovna, Saratov State University

The article presents the results of the search for the optimal hormonal composition of the nutrient medium for the induction of direct organogenesis in the culture of mature embryos of the maize homozygous line ATTM (bm, wx, y). The mature embryos isolated from kernels were used as the primary explant. The 11 media variants were tested for induction of direct organogenesis: MS without hormones (control) and with phytohormones in different concentrations and combinations. The presence of BAP in the medium as a single growth regulator or in combination with other hormones ensured shoot multiplication. The largest number of axillary shoots on the explant (on average 7,07) developed on a medium with 2,0 mg/l BAP. However, long-term cultivation on this medium led to the development of many microshoots that were difficult to separate from each other and which did not survive after being transferred on a fresh nutrient medium. In some cases, floral hemogenesis was also observed. In order to exclude these phenomena the explants were transferred onto a medium with a low concentration of BAP (0,2 mg/l) after two months of cultivation. Thus, in the ATTM (bm, wx, y) line effective shoot multiplication by direct organogenesis is achieved by explant cultivation on MS medium with 2,0 mg/l BAP for 2 months with followed subcultivation on MS medium with 0,2 mg/l BAP.

  1. Armstrong C., Green C. E. Establishment and maintenance of frible, embryogenic maize callus and involvement of L-proline // Planta. 1985. Vol. 164, № 2. P. 207–214. DOI: https://doi.org/10.1007/BF00396083
  2. Armstrong C. L. Regeneration of plants from somatic cells cultures: applications for in vitro genetic manipulation // The Maize / eds. M. Freeling, V. Walbot. N.Y. : Springer Verlag, 1994. P. 663–671.
  3. Aguado-Santacruz G. A., Garcia-Moya E., AguilarAcuna J. L., Moreno-Gomez B., Solis-Moya E., PreciadoOrtiz E. R., Jimenez-Bremont J. F., Rascon-Cruz Q. In vitro plant regeneration from quality protein maize // In Vitro Cellular and Developmental Biology Plant. 2007. Vol. 43. P. 215–224. DOI: https://doi.org/10.1007/s11627- 007-9042-9
  4. Altpeter F., Springer N. M., Bartley L. E., Blechl A. E., Brutnell T. P., Citovsky V., Conrad L. J., Gelvin S. B., Jackson D. P., Kausch A. P., Lemaux P. G., Medford J. I., Orozco-Cardenas M. L., Tricoli D. M., Van Eck J., Voytas D. F., Walbot V., Wang K., Zhang Z. J., Stewart C. N. Advancing crop transformation in the era of genome editing // Plant Cell. 2016. Vol. 28. P. 1510–1520.
  5. Green C. E., Phillips H. L. Plant regeneration from tissues cultures of maize // Crop Science. 1975. Vol. 15, № 5. P. 417–421.
  6. Duncan D. R., Williams M. E., Zehr B. E., Widholm J. M. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes // Planta. 1985. Vol. 165. P. 322–332. DOI: https://doi.org/10.1007/BF00392228
  7. Furini A., Jewell D. C. Somatic embryogenesis a nd plant regeneration from immature and mature embryos of tropical and subtropical Zea mays L. genotypes // Maydica. 1994. Vol. 39. P. 155–164. DOI: https://doi.org/10.2225/vol15-issue1-fulltext-7
  8. Bohorova N. E., Luna B., Brito R. M., Huerta L. D., Hoisington D. A. Regeneration potential of tropical, subtropical, mid altitude and highland maize inbred // Maydica. 1995. Vol. 40. P. 275–281.
  9. Carvalho C. H. S., Bohorova N., Bordallo P. N., Abreu L. L., Valicente F. H., Bressan W., Paiva E. Type II callus production and plant regeneration in tropical maize genotypes // Plant Cell Reports. 1997. Vol. 17, № 1. P. 73–76. DOI: https://doi.org/10.1007/s002990050355
  10. Huang X. Q., Wei Z. M. High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.) // Plant Cell Rep. 2004. № 22. P. 793–800.
  11. Anh N. T. M. In vitro culture of maize (Zea mays L.) inbred line SM5-4 // Abstract of thesis presented to the Senate of University Putra Malaysia in fulfi llment of the requirement for the degree of Master of Science. Putra, 2005. P. 1–8.
  12. Vasil I. K. Tissue cultures of maize // Maydica. 2005. Vol. 50. P. 361–365.
  13. Rakshit S., Rashid Z., Sekhar J. C., Fatma T., Dass S. Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds // Plant Cell Tiss Organ Cult. 2010. Vol. 100, № 1. P. 31–37.
  14. Petrillo C. P., Carneiro N. P., Purcino A. A. C., Carvalho C. H. S., Alves J. D., Carneiro A. A. Optimization of particle bombardment parameters for the genetic transformation of Brazilian maize inbred lines // Pesquisa Agropecuaria Brasileira, Brasilia, DF. 2008. Vol. 43, № 3. P. 371–378. https://doi.org/10.1590/S0100-204X2008000300012
  15. Guruprasad M., Sridevi Т., Vijayakumar G., Kumar M. S. Plant regeneration through callus initiation from mature and immature embryos of maize (Zea mays L.) // Indian J. Agr. Res. 2016. Vol. 50, № 2. P. 135–138. DOI: https://doi.org/10.18805/ijare.v0iOF.8435
  16. De Vasconcelos M. J. V., Antunes M. S., De Oliveira M. F., Lopes M. A., Figueiredo J. E. F. Callus induction and plant regeneration from immature embryos culture of tropical maize // Revista Brasileira de Milho e Sorgo. 2018. Vol. 17, № 3. P. 359–368.
  17. Sawahel W. A., Ali A. M. Callus induction and maintenance of Zea mays kernels // Biotechnology Letters. 1994. Vol. 16, № 4. P. 397–400.
  18. Monalisha R., Chakraborty M., Banerjee M., Prasad K., Shree B., Tudu V. K. Response of different genotypes on in vitro regeneration of maize (Zea mays L.) // Journal of Pharmacognosy and Phytochemistry. 2018. Vol. 1. P. 2422–2424.
  19. Sidorov V., Gilbertson L., Adae P., Duncan D. Agrobacterium-mediated transformation of seedling-derived maize callus // Plant Cell Reproduction. 2006. Vol. 25. P. 320–328. DOI: https://doi.org/10.1007/s00299-005-0058-5
  20. Gudlavalleti P. K., Pagidoju S., Muppala S., Kodandarami R. M., Puligandla S. K. Coleoptilar node – a seasonindependent explant source for in vitro culture in maize (Zea mays L.) // Journal of Applied Biology and Biotechnology. 2018. Vol. 6, № 3. P. 20–28.
  21. Kunakh V. A. Genomic variability of somatic plant cells. 3. Callus formation in vitro. Biopolymers and Cell, 1997, iss. 13, no. 5, pp. 362–371 (in Russian).
  22.  Humood B. M. H., Apanasova N. V., Yudakova O. I. Introduction of parthenogenetic lines of maize into in vitro culture. Isv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2018, vol. 18, iss. 3, pp. 320–324 (in Russian). DOI: https://doi.org/10.18500/1816-9775-2018-18-3-320-324
  23. Humood B. M. H., Yudakova O. I. Induction of direct organogenesis in the culture of mature maize embryos. Isv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2019, iss. 19, no. 3, pp. 289–294 (in Russian). DOI: https://doi.org/10.18500/1816-9775-2019-19-3-289-294
  24. Mushke R., Yarra R., Bulle M. Effi cient in vitro direct shoot organogenesis from seedling derived split node explants of maize (Zea mays L.) // Journal of Genetic Engineering and Biotechnology. 2016. Vol. 14. P. 49–53.
  25. Ahmad M. Z., Hussain I., Ahmed S., Roomi S. Direct in vitro multiple shoot regeneration in maize (Zea mays) inbred lines // J. Innov. Bio-Res. 2017. Vol. 1, № 1. P. 24–29.
  26. Ovchinnikova V. N., Sotchenko V. S., Sotchenko Y. V., Varlamova N. V., Rodionova M. A., Kharchenko P. N. Susceptibility of maize mesocotyl culture to agrobacterium transformation and its in vitro regeneration // Appl. Biochem. Microbiol. 2018. Vol. 54, № 8. P. 808–815.
  27. Olawuyi O. J., Dalamu O., Olowe O. M. In vitro regeneration and proliferation of maize (Zea mays L.) genotypes through direct organogenesis // Journal of Natural Sciences Research. 2019. Vol. 9, № 6. P. 65–73. DOI: https://doi.org/10,7176 /JNSR
  28. Gutorova O. V., Apanasova N. V., Yudakova O. I. Creation of genetically labeled maize lines with inherited and induced types of parthenogenesis. Izvestia of Samara Scientifi c Center of Russian Academy of Sciences, 2016, iss. 18, no. 2–2, p. 341–344 (in Russian).
  29. Apanasova N. V., Gutorova O. V., Yudakova O. I., Smolkina Yu. V. Features of the structure and development of female generative structures in maize lines with inherited and induced types of parthenogenesis. Izvestia of Samara Scientifi c Center of Russian Academy of Sciences, 2017, iss. 19, no. 2–2, pp. 216–219 (in Russian).
  30. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol. Plant. 1962. Vol. 15. P. 473–497.
  31. Skoog, F., Miller C. O. Chemical regulation of growth and organ formation in plant tissue cultures in vitro // Symp. Soc. Exp. Biol. 1957. Vol. 11. P. 118–131.