Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Full text:
(downloads: 141)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
543.554.6.615.33
EDN: 
HEXCHR

The influence of nature of active components and modifiers on electroanalytic properties of planar cefalexine-selective sensors

Autors: 
Kulapina Elena Grigorievna, Saratov State University
Kulapina Olga Ivanovna, Saratov State Medical University
Ankina Vlada D., Saratov State Medical University
Abstract: 

The 1st generation cefalexine-cephalosporine antibiotic is used in the treatment of various infectious diseases. Spectrophotometry, kinetic spectrophotometry, spectrofluorimetry are proposed to determination of cefalexine in medicine and biological environment. Planar screenprinted sensors allow analyzing the micro-volumes of samples, which is important for the analysis of biological objects without preliminary samplepreparation. Depending on the active material and modifiers, you can create planar sensors for the determination of different organic compounds. In this work we have studied the influence of the nature of electroactive compounds and modifiers on the electroanalytic properties of planar cefalexine-selective sensors. Associates of tetradecylammonium and dimethyldistearylammonium with complex compounds silver (1) – cefalexine (Ceas = 1–3%), polyaniline modifiers and cupric oxide nanoparticles have been used as active components, the ratio EAS: modifier is 1:1. The main electroanalytic and operational characteristics of cefalexine-selective sensors in aqueous solutions and on the background of oral fluid are determined. Advantage of tetradecylammonium in active components of cefalexine-selective sensors is shown. For cefalexine- sensors, the optimal is: linearity interval 1·10-2 – 1·10-4, response time 20–25 seconds, for unmodified: 10–15 sec, for modified in 1·10-2 M solutions of cefalexine, service life – 1 month. Modifiers approximate angular coefficients of electrode functions to theoretical values for single-charge ions, reduce response time and drift of potential, reduce the detection limit of cefalexine. Sensors are used for the determination of cephalexine in model aqueous solutions and oral fluid with added antibiotic additives, in expired cephalexine preparations.

Reference: 
  1. Yakovlev V. P., Yakovlev S. V. Ratsional’naya antimikrobnaya farmakoterapiya [Rational antimicrobial pharmacotherapy]. Moscow, Litterra Publ., 2007. 784 p. (in Russian).
  2. Kulapina O. I., Kulapina E. G. Antibakterial’naya terapiya. Sovremennyye metody opredeleniya antibiotikov v biologicheskikh i lekarstvennykh sredakh [Antibacterial therapy. Current methods of determination of antibiotics in biological and medicinal media]. Saratov, Saratovskiy istochnik Publ., 2015. 91 p. (in Russian).
  3. Li M., Li Y.-T., Li D.-W., Long Y.-T. Recent developments and applications of screen-printed electrodes in environmentalassays. Analyt. Chim. Acta, 2012, vol. 734, pp. 31–34.
  4. Alonso-Lomillo M. A., Dominguez-Renedo O., ArcosMartinez M. J. Screen-printed biosensors in microbiology. Talanta, 2010, vol. 82, no. 5, pp. 1629–1636.
  5. Shetti N. P., Nayak D. S., Malode S. J., Kulkarni R. M. An electrochemical sensor for clozapine at ruthenium doped TiO2 nanoparticles modified electrode. Sens. Actuators B, 2017, vol. 247, pp. 858–867.
  6. Yu Ya., Guo M., Yuan M., Liu W., Hu J. Nickel nanoparticle-modifi ed electrode for ultra-sensitive electrochemical detection of insulin. Biosens. Bioelectron., 2016, vol. 77, pp. 215–219.
  7. Amani-Beni Z., Nezamzadeh-Ejhieh A. NiO nanoparticles modifi ed carbon paste electrode as a novel sulfasalazine sensor. Anal. Chim. Acta, 2018, vol. 1031, pp. 47–59.
  8. Lomae A., Nantaphol S., Kondo T., Chailapakul O., Siangproh W., Panchompoo J. Simultaneous determination of ?-agonists by UHPLC coupled with electrochemical detection based on palladium nanoparticles modifi ed BDD electrode. J. Electroanal. Chem., 2019, vol. 840, pp. 439–448.
  9. Wang T., Su W., Fu Y., Hu J. Controllably annealed CuO-nanoparticle modifi ed ITO electrodes: Characterisation and electrochemical studies. Appl. Surf. Sci., 2016, vol. 390, pp. 795–803.
  10. Martinez-Perinan E., Revenga-Parra M., Gennari M., Pariente F., Mas-Balleste R., Zamora F., Lorenzo E. Insulin sensor based on nanoparticle-decorated multiwalled carbon nanotubes modifi ed electrodes. Sens. Actuators, B, 2016, vol. 222, pp. 331–338.
  11. Oztekin Ya., Tok M., Bilici E., Mikoliunaite L., Yazicigil Z., Ramanaviciene A., Ramanavicius A. Copper nanoparticle modifi ed carbon electrode for determination of dopamine. Electrochim. Acta, 2012, vol. 76, pp. 201–207.
  12. Kenarkob M., Pourghobadi Z. Electrochemical sensor for acetaminophen based on a glassy carbon electrode modifi ed with ZnO/Au nanoparticles on functionalized multi-walled carbon nano-tubes. J. Microchem., 2019, vol. 146, pp. 1019–1025.
  13. Shetti N. P., Nayak D. S., Kuchinad G. T. Electrochemical oxidation of erythrosine at TiO2 nanoparticles modifi ed gold electrode – An environmental application. J. Environ. Chem. Eng., 2017, vol. 5, no. 3, pp. 2083–2089.
  14. Chang Y. H., Woi P. M., Alias Ya. The selective electrochemical detection of dopamine in the presence of ascorbic acid and uric acid using electro-polymerised?-cyclodextrin incorporated f-MWCNTs/polyaniline modifi ed glassy carbon electrode. J. Microchem., 2019, vol. 148, pp. 322–330.
  15. Afzali M., Jahromi Z., Nekooie R. Sensitive voltammetric method for the determination of naproxen at the surface of carbon nanofi ber/gold/polyaniline nanocomposite modifi ed carbon ionic liquid electrode. J. Microchem., 2019, vol. 145, pp. 373–379.
  16. Asadian E., Shahrokhian S., Zad A. I., GhorbaniBidkorbeh F. Glassy carbon electrode modifi ed with 3D graphene–carbon nanotube network for sensitive electrochemical determination of methotrexate. Sens. Actuators, B, 2017, vol. 239, pp. 617–627.
  17. Hadi M., Honarmand E. Application of anodized edgeplane pyrolytic graphite electrode for analysis of clindamycin in pharmaceutical formulations and human urine samples. Russ. J. Electrochem., 2017, vol. 53, no. 4, pp. 380–390 (in Russian).
  18. Beitollahi H., Hamzavi M., Torkzadeh-Mahani M. Electrochemical determination of hydrochlorothiazide and folic acid in real samples using a modifi ed graphene oxide sheet paste electrode. Mater. Sci. Eng., 2015, vol. 52, pp. 297–305.
  19. Lu X. C., Song L., Ding T. T., Lin Y. L., Xu C. X. CuS–MWCNT based electrochemical sensor for sensitive detection of bisphenol A. Russ. J. Electrochem., 2017, vol. 53, no. 4, pp. 366–373 (in Russian).
  20. Issa Y. M., Mohamed S. H., Baset M. A. -E. Chemically modified carbon paste and membrane sensors for the determination of benzethonium chloride and some anionic surfactants (SLES, SDS, and LABSA): Characterization using SEM and AFM. Talanta, 2016, vol. 155, pp. 158–167.
  21. Eremenko A. V., Prokopkina T. A., Kasatkina V. E., Osipova T. A., Kurochkin I. N. Planar thiol-sensitive sensory elements for determination of the activity of butyrylcholinesterase and analysis its inhibitors. Moscow University Chemical Sciences Bulletin, 2014, vol. 55, no. 3, pp. 174–179 (in Russian).
  22. Frag E. Y., Mohamed M. E., El-Sanafery S. S., ElBoraey H. A. Carbon Potentiometric Sensors Modifi ed with Beta-cyclodextrin as a Carrier for the Determination of Bisoprolol Fumarate International. J. Electrochemical Science, 2019, vol. 14, no. 7, pp. 6603–6616.
  23. Khaled E., Kamel M. S., Hassan H. N., Abd El-Alim S. H., Aboul-Enein H. Y. Novel screen printed potentiometric sensors for the determination of oxicams. RSC Advances, 2015, vol. 5, no. 17, pp. 12755–12762.
  24. Ali T. A., Mohamed G. G., Yahya G. A Development of Novel Potentiometric Sensors for Determination of Lidocaine Hydrochloride in Pharmaceutical Preparations, Serum and Urine Samples. J. Pharmaceutical Research, 2017, vol. 16, no. 2, pp. 498–512.
  25. Ali T. A., Hassan A. M. E., Mohamed G. G. Manufacture of Lead-Specifi c Screen-Printed Sensor Based on Lead Schiff Base Complex as Carrier and Multi-Walled Carbon Nanotubes for Detection of Pb(II) in Contaminated Water Tests. J. Electrochemical Science, 2016, vol. 11, no. 6, pp. 10732–10747.
  26. Marcusina N. N. Lithium-selective solid-contact electrochemical sensors based on an electron-conducting polymer poly (3-octylthiophene ). Successes of Modern Natural Science, 2016, no. 2, pp. 39–43 (in Russian).
  27. Milakin K. A., Menshikova I. P., Sergeev V. G. Composite material polyaniline-polymer matrix as the basis for creation highly sensitive gas-sensor for ammonia. Structure and Dynamics of Molecular System, 2008, no. 3, pp. 326–329 (in Russian).
  28. Evtugyn G., Porfi reva A., Hianik T. Electropolymerized materials for biosensors. In: A. Tiwari, H. K. Patra, A. P. F. Turner, eds. Advanced Bioelectronics Materials. Beverly, MA, Wiley – Scrivener Publishing, 2015, pp. 89–184.
  29. Kulapina O. I., Kulapina E. G., Ankina V. D. ScreenPrinted potentiometric sensors based on carbon materials for determining cefotaxime and cefuroxime. J. Anal. Chem., 2020, vol. 75, no. 2, pp. 231–237 (in Russian).
  30. Kulapina E. G., Chanina V. V. Modifi ed potentiometric sensors of various types for determination of ceftriaxone. Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2020, vol. 20, iss. 3, pp. 259–267 (in Russian). https://doi.org/10.18500/1816-9775-2020-20-3-259-267
  31. Alekseev V. G. Bioneorganicheskaya khimiya penitsillinov i tsefalosplorinov [Bioneorganic chemistry of penicillins and cephalosporins]. Tver, Tver. gosudarstvennyi universitet Publ., 2009. 104 p. (in Russian).
  32. Zhirkov A. A., Yagov V. V., Antonenko A. A., Korotkov A. S., Zuev B. K. Determination of the Mineral Composition of Human Saliva by Microplasma Atomic Emission Spectroscopy. J. Anal. Chem., 2020, vol. 75, no. 1, pp. 63–66 (in Russian).
Received: 
12.01.2021
Accepted: 
25.01.2021
Published: 
30.06.2021