Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Pankratov A. N., Tsivileva O. M., Drevko B. I., Nikitina V. E. Quantum Chemical Study and QSAR Properties of 3-Seleno- pentanediones-1,5 Aromatic Derivatives: Prerequisites for Inter­ action with the Carbohydrate-Binding Proteins. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2010, vol. 10, iss. 1, pp. 7-13. DOI: 10.18500/1816-9775-2010-10-1-7-13

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 73)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
582.28:57.083

Quantum Chemical Study and QSAR Properties of 3-Seleno- pentanediones-1,5 Aromatic Derivatives: Prerequisites for Inter­ action with the Carbohydrate-Binding Proteins

Autors: 
Pankratov Alexei N., Saratov State University
Tsivileva O. M., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Drevko B. I., Saratov State Agrarian University named after V.I. Vavilov.
Nikitina V E, Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Abstract: 

The role of spatial and electronic  structure, hydrophobic  properties and concentration of organoselenium compounds  on their interaction with fungal metabolites  - carbohydrate-binding proteins, extracellular lectins  of Lentinula edodes (shiitake mushroom) has  been consi­ dered. By  the hybrid density  functional theory  method at the B3LYP/6-31G(d,p) theory  level, spatial and electronic  structure of the 1,5-di(4-R-phenyl)-3-selenopentanediones-1,5 molecules  has  been studied. By  means  of the QSAR properties  evaluation by  the atomic- bonding-additive schemes, the distinct hydrophobicity  of these com­ pounds  has  been demonstrated. The theoretical characteristics  thus obtained have been used for interpreting the experimental data on the lectin activity  enhancement in the presence of 1,5-di(4-R-phenyi)- 3-selenopentanediones-1,5, as  well as  on the greatest efficiency  of ethoxy derivative.

Reference: 

1. 

Whanger P.D. Selenocompounds in Plants and Animals and Their Biological Significance // J. Amer. Coll. Nutr. 2002, Vol.21, №3.P.223-232.

2. 

Mikiashvili N.Elisashvili V., Wasset- S.P., Nevo E. Comparative Study of Lectin Activity of Higher Basidiomycetes // Int. J. Med. Mushrooms. 2006. Vol.8, Iss.l. P.31-38.  EDN: MHAKKP

3. 

Яуцик М.Д.Панамок Е.К, Луцик А.Д. Лектины. Львов, 1981. 156 с.

4. 

Цивилева О.М.Никитина В.Е.Лощинина Е.А. Выделение и характеристика внеклеточных лектинов Lentinus edodes (Berk.) Sing // Биохимия. 2008. T.73, №10. С.1438-1446.  EDN: JUUYOR

5. 

Цивилева О.М, Никитина В. Е.Панкратов А.Я, Древко Б.И.Лощинина Е.А.Гарыбова Л.В. Влияние селенсо-держащего препарата ДАФС-25 на рост и лектиновую активность Lentinus edodes i/ Биотехнология. 2005. №2. С.56-62.  EDN: HVTSAT

6. 

Кон В. Электронная структура вещества - волновые функции и функционалы плотности // УФН. 2002, Т. 172, №3. С.336-348.

7. 

Becke A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior // Physical Review A. 1988. Vol.38, №6. P.3098-3100.  EDN: SMQBQL

8. 

Becke А.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange // J. Chem. Phys. 1993. Vol.98, №7. P.5648-5652.  EDN: SGUIWZ

9. 

Lee C, Yang W, Parr R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density // Physical Review B. 1988. Vol.37, №2. P.785-789.

10. 

Ditchfield R., Hehre WJ., Popte J.A. A Self-Consistent Molecular-Orbital Methods. ГХ. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules // J. Chem. Phys. 1971. Vol.54, №2. P.724-728.

11. 

Blessing H.Kraus S.Heindl P.Bal W.Hartwig A. Interaction of selenium compounds with zinc finger proteins involved in DNA repair // Eur. J. Biochem. 2004. Vol.271, №15. P.3190-3199.  EDN: MGJYRL

12. 

Jacob C, Maret W., Vallee B.L. Selenium redox biochemistry of zinc-sulfur coordination sites in proteins and enzymes // Proc. Natl. Acad. Sci. USA. 1999. Vol.96, №5. P.1910-1914.

13. 

Turan В.Eliss H.Desilets M. Oxidants increase the intracellular free Zn2 concentration in rabbit ventricular myocytes // Amer. J. Physiol. 1997. Vol.272, №5 (Pt.2). P.2095-2106.

14. 

Ganther H.E. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thiore-doxin reductase // Carcinogenesis. 1999. Vol.20, №9. P.1657-1666.  EDN: IMVBLV

15. 

Jacob C, Giles G.I., Giles N.M., Sies H. Sulfur and selenium: the role of oxidation state in protein structure and function // Angew. Chem. Int. Ed. Engl. 2003. Vol.42, №39. P.4742-4758.

16. 

Лахтин В.М. Биотехнология лектинов // Биотехнология. 1989. T.5, №6. C.676-691.  EDN: IEXDQO

17. 

Лахтин В.М. Молекулярная организация лектинов // Молекулярная биология. 1994. Т.28, вып.2. С.245-273.  EDN: NFBRGS

18. 

Elgavish S.Shaanan В. Eectin-Carbohydrate Interactions: Different Folds, Common Recognition Principles // Trends Biochem. Sci. 1997. Vol.22, №12. P.462-467.  EDN: AKOHSZ

19. 

Hasel W.Hendrickson Т.Е.Still W.C. A Rapid Approximation to the Solvent-Accessible Surface Areas of Atoms // Tetrahedron Computer Methodology. 1988. Vol.1, №2. P.103-116.

20. 

Still W.C.Tempczyk A., Haw ley R.C., Hendrickson Th, Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics // J. Amer. Chem. Soc. 1990. Vol.112, №16. P.6127-6129.

21. 

Bodor N.Gabanyi Z., Wong Chu-Kuok. A New Method for the Estimation of Partition Coefficient // J. Amer. Chem. Soc. 1989. Vol.111, №11. P.3783-3786.

22. 

Gavezotti A. The Calculation of Molecular Volumes and the Use of Volume Analysis in the Investigation of Structured Media and of Solid-State Organic Reactivity // J. Amer. Chem. Soc. 1983. Vol.105, №16. P.5220-5225.

23. 

Ghose A.K.Crippen G.M. Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed Quantitative Structure - Activity Relationships. I. Partition Coefficients As a Measure of Hydrophobicity // J. Comput. Chem. 1986. Vol.7,№4.P.565-577.

24. 

Ghose A.K.Crippen G.M. Atomic Physicochemical Parameters for Three-Dimensional-Structure-Directed Quantitative Structure - Activity Relationships. 2. Modelling Disperse and Hydrophobic Interactions // J. Chem. Inf. and Comput. Sci. 1987. Vol.27, №1.P.21-35.

25. 

Viswanadhan V.N.Ghose A.K.Revankar G.N.Robins R.K. Atomic Physicochemical Parameters for Three Dimensional Structure Directed Quantitative Structure - Activity Relationships. 4. Additional Parameters for Hydrophobic and Dispersive Interactions and Their Application for an Automated Superposition of Certain Naturally Occurring Nucleoside Antibiotics // J. Chem. Inf. and Comput. Sci. 1989. Vol.29, №3. P.163-172.

26. 

Miller K.J. Additivity Methods in Molecular Polarisability //J. Amer. Chem. Soc. 1990. Vol.112, №23. P.8533-8542.

27. 

Ghose A.K.Pritchett A.Crippen G.M. Atomic Physico-chemical Parameters for Three Dimensional Structure Directed Quantitative Structure - Activity Relationships III. Modelling Hydrophobic Interactions // J. Comput. Chem. 1988. Vol.99, №l.P.80-90.

Received: 
02.11.2009
Accepted: 
10.01.2010
Published: 
25.02.2010
Short text (in English):
(downloads: 57)