Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Filip’echeva Y. A., Sigida E. N., Tkachenko O. V., Burygin G. L. Changes in the chemical, physical-chemical and biological properties of Ochrobactrum cytisi IPA7.2 lipopolysaccharide during О-deacylation. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2024, vol. 24, iss. 1, pp. 44-50. DOI: 10.18500/1816-9775-2024-24-1-44-50, EDN: AJKDRB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 86)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
579.64:661.162.66
EDN: 
AJKDRB

Changes in the chemical, physical-chemical and biological properties of Ochrobactrum cytisi IPA7.2 lipopolysaccharide during О-deacylation

Autors: 
Filip’echeva Yulia A., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Sigida Elena N., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Tkachenko Oksana V., Saratov State University of Genetics, Biotechnology and Engineering named after N. I. Vavilov
Burygin Gennady L., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Abstract: 

Lipopolysaccharides are compounds of bacterial origin that have biological activity against plants, animals and humans. This work provides information on the preparation and characterization of the properties of modifi ed lipopolysaccharide derivatives of the rhizosphere bacterium Ochrobactrum cytisi IPA7.2. Deacylation has been carried out using alkaline hydrolysis, followed by chromatographic separation of the fractions. O-deacetylation of O-polysaccharide led to a 2-fold increase in the extinction of the products of the phenol-sulfuric acid reaction. The fatty acid composition of lipid A did not change during alkaline hydrolysis. A comparison of supramolecular particles in an aqueous medium of native and deacylated forms of lipopolysaccharide using dynamic light scattering revealed that, as a result of modifi cation, the size of micelles decreased from 65 nm to 35 nm and their negative zeta potential increased from –22 mV to –30 mV. It has been found that non-stoichiometric acetylation of lipopolysaccharide O. cytisi IPA7.2 did not aff ect the interaction with specifi c antibodies but was important for the manifestation of growth-stimulating activity towards potato microplants.

Reference: 
  1. Raetz C. R., Whitfield C. Lipopolysaccharide endotoxins // Ann. Rev. Biochem. 2002. Vol. 71, iss. 1. P. 635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
  2. Kagan J. C. Lipopolysaccharide detection across the kingdoms of life // Trends Immunol. 2017. Vol. 38, iss. 10. P. 696 –704. https://doi.org/10.1016/j.it.2017.05.001
  3. Valvano M. A. Genetics and biosynthesis of lipopolysaccharide // Molecular medical microbiology / eds. Y.-W. Tang, M. Sussman, D. Liu, I. Pexton, J. Schwartzman. 2nd ed. Academic Press, 2015. P. 55–89. https:// doi.org/10.1016/B978-0-12-397169-2.00004-4
  4. Vanacore A., Vitiello G., Wanke A., Cavasso D., Clifton L. A., Mahdi L., Campanero-Rhodes M. A., Solís D., Wuhrer M., Nicolardi S., Molinaro A. Lipopolysaccharide O-antigen molecular and supramolecular modifi cations of plant root microbiota are pivotal for host recognition // Carbohydr. Polym. 2022. Vol. 277. Article number 118839. P. 1–11. https://doi.org/10.1016/j. carbpol.2021.118839
  5. Ryan M. P., Pembroke J. T. The genus Ochrobactrum as major opportunistic pathogens // Microorganisms. 2020. Vol. 8 (11). Article number 1797. https://doi. org/10.3390/microorganisms8111797 6
  6. Burygin G. L., Kargapolova K. Yu., Kryuchkova Ye. V., Avdeeva E. S., Gogoleva N. E., Ponomaryova T. S., Tkachenko O. V. Ochrobactrum cytisi IPA7.2 promotes growth of potato microplants and is resistant to abiotic stress // World J. Microbiol. Biotechnol. 2019. Vol. 35, iss. 4. Article number 55. P. 1–12. https://doi.org/10.1007/s11274-019-2633-x
  7. Sigida E. N., Kargapolova K. Y., Shashkov A. S., Zdorovenko E. L., Ponomaryova T. S., Meshcheryakova A. A., Tkachenko O. V., Burygin G. L., Knirel Y. A. Structure, gene cluster of the O antigen and biological activity of the lipopolysaccharide from the rhizospheric bacterium Ochrobactrum cytisi IPA7.2 // Int. J. Biol. Macromol. 2020. Vol. 154. P. 1375–1381. https://doi.org/10.1016/j.ijbiomac.2019.11.017
  8. DuBois M., Gilles K. A., Hamilton J. K., Rebers P. T., Smith F. Colorimetric method for determination of sugars and related substances // Anal. Chem. 1956. Vol. 28, iss. 3. P. 350–356. https://doi.org/10.1021/ac60111a017
  9. Bailey G. S. Ouchterlony double immunodiffusion // The protein protocols handbook. 1996. P. 749–752. https:// doi.org/10.1007/978-1-60327-259-9_135
  10. Zdorovenko E. L., Kadykova A. A., Shashkov A. S., Varbanets L. D., Bulyhina T. V., Knirel Y. A. Lipopolysaccharide of Pantoea agglomerans 7969: Chemical identifi cation, function and biological activity // Carbohydr. Polym. 2017. Vol. 165. P. 351–358. https://doi. org/10.1016/j.carbpol.2017.02.053
  11. Tkachenko O. V., Burygin G. L., Evseeva N. V., Fedonenko Y. P., Matora L. Y., Lobachev Y. V., Shchyogolev S. Y. Morphogenesis of wheat calluses treated with Azospirillum lipopolysaccharides // Plant Cell Tissue Organ Cult. 2021. Vol. 147, iss. 1. P. 147–155. https:// doi.org/10.1007/s11240-021-02114-2
  12. Velasco J., Moll H., Knirel Y. A., Sinnwell V., Moriyón I., Zähringer U. Structural studies on the lipopolysaccharide from a rough strain of Ochrobactrum anthropi containing a 2,3-diamino-2,3-dideoxy-Dglucose disaccharide lipid A backbone // Carbohydr. Res. 1998. Vol. 306, iss. 1–2. P. 283–290. https://doi.org/10.1016/S0008-6215(97)10029-5
  13. Zamlynska K., Komaniecka I., Zebracki K., Mazur A., Sroka-Bartnicka A., Choma A. Studies on lipid A isolated from Phyllobacterium trifolii PETP02T lipopolysaccharide // Antonie Van Leeuwenhoek. 2017. Vol. 110. P. 1413–1433. https://doi.org/10.1007/s10482- 017-0872-0
  14. Wang J., Villeneuve S., Zhang J., Lei P.S., Miller C. E., Lafaye P., Nato F., Szu S. C., Karpas A., Bystricky S., Robbins J. B. On the antigenic determinants of the lipopolysaccharides of Vibrio cholerae O: 1, serotypes Ogawa and Inaba // J. Biol. Chem. 1998. Vol. 273, iss. 5. P. 2777–2783. https://doi.org/10.1074/jbc. 273.5.2777
  15. Haji-Ghassemi O., Blackler R. J., Martin Young N., Evans S. V. Antibody recognition of carbohydrate epitopes // Glycobiology. 2015. Vol. 25, iss. 9. P. 920–952. https://doi.org/10.1093/glycob/cwv037
Received: 
11.12.2023
Accepted: 
23.12.2023
Published: 
29.03.2024
Short text (in English):
(downloads: 51)