Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Karelina K. O., Potapov A. Ю. Carbonyl olefi nation of N-substituted tetrahydroquinoline-6-carbaldehydes. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2025, vol. 25, iss. 2, pp. 128-136. DOI: 10.18500/1816-9775-2025-25-2-128-136, EDN: AXANZT

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 368)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
547.831.3
EDN: 
AXANZT

Carbonyl olefi nation of N-substituted tetrahydroquinoline-6-carbaldehydes

Autors: 
Karelina Kristina Olegovna, Voronezh State University
Potapov Andrey Юрьевич, Voronezh State University
Abstract: 

Tetrahydroquinolines are important structural fragments of many biologically active compounds exhibiting antifungal, antitumor, antiviral and neurotropic properties. This paper presents methods for the synthesis of N-substituted tetrahydroquinoline-6-carbaldehydes and a study of the possibility of their olefi nation using the Wittig and Horner – Wadsworth – Emmons methods. As a result of the interaction of N-alkyl- and N-acylhydroquinolines with the Vilsmeier – Haack complex, N-substituted tetrahydroquinoline-6-carbaldehydes have been obtained in yields of 77–85%. Olefi nation of the obtained carbaldehydes by the Wittig reaction using triphenylalkylphosphonium salts has made it possible to obtain a number of N-substituted derivatives, including: (E)-3-(2,2,4-trimethyl-1,2,3,4-tetrahydroquinolin-6-yl)acrylonitriles, (E)-1-phenyl-3-(2,2,4- trimethyl-1,2,3,4-tetrahydroquinolin-6-yl)prop-2-en-1-ones, ethyl (E)-3-(N-benzoyl-7-methoxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinolin-6-yl) acrylate. It has been found that when this interaction is extended to N-benzyl-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline-6-carbaldehyde and N-benzyl-2,2,4-trimethyl-4-(4-chlorophenyl)-1,2,3,4-tetrahydroquinoline-6-carbaldehyde, diffi cult-to-separate mixtures are formed, which is explained by the presence of a methylene-active benzyl group in these compounds, which in the presence of sodium methylate can enter into condensation with the aldehyde fragment. The application of the Horner – Wadsworth – Emmons reaction for the olefi nation of N-methyl- and N-benzyl-1,2,3,4-tetrahydroquinoline-6-carbaldehydes using dimethyl (cyanomethyl) phosphonate has made it possible to synthesize (E)-3-(Nmethyl-2,2,4-trimethyl-1,2,3,4-tetrahydroquinolin-6-yl) acrylonitrile, (E)-3-(N-benzyl-2,2,4-trimethyl-1,2,3,4-tetrahydroquinolin-6-yl) acrylonitrile and (E)-3-(-N-benzyl-2,2,4-trimethyl-4-(4-chlorophenyl)-1,2,3,4-tetrahydroquinolin-6-yl) acrylonitrile with yields of 83–89%. Analysis of the ¹H NMR spectra has showed that all the synthesized olefi nation products are in the form of E-isomers. The obtained results demonstrate the potential of using the developed methods for the synthesis of new tetrahydroquinoline derivatives.

Reference: 
  1. Khadem S., Marles R. J. Tetrahydroquinoline-containing natural products discovered within the last decade: Occurrence and bioactivity // Nat. Prod. Res. 2023. Vol. 39, № 1. P. 182–194. https://doi.org/10.1080/14786419.2023.2290688  
  2. Tang G. L., Tang M. Ch., Song L. Q., Zhang Y. Biosynthesis of Tetrahydroisoquinoline Antibiotics // Curr. Top. Med. Chem. 2016. Vol. 16, № 15. P. 1717–1726. https://doi.org/10.2174/1568026616666151012112329  
  3. Deng T., Xin H., Luo X., Zhou Q., Wang Y., Hu Ch., Fu H., Xue W. Antifungal activity of chalcone derivatives containing 1,2,3,4-tetrahydroquinoline and studies on them as potential SDH inhibitors // Pest. Manag. Sci. 2024. Vol. 81, № 3. P. 1251–1260. https://doi.org/10.1002/ps.8524  
  4. Zhang X., Yang Z., Xu H., Liu Y., Yang X., Sun T., Lu X., Shi F., Yang Q., Chen W., Duan H., Ling Y. Synthesis, antifungal activity, and 3D-QASR of novel 1,2,3,4-tetrahydroquinoline derivatives containing a pyrimidine ether scaffold as chitin synthase inhibitors // J. Agric. Food Chem. 2022. Vol. 70, № 30. P. 9262–9275. https://doi.org/10.1021/acs.jafc.2c01348  
  5. Alanazi N. M. M., Althobati I. O., El-Ossaily Y. A., Arafa W. A. A., El-Sayed M. Y., Altaleb H. A., Ahmed H. A., Tolba M. S. Green synthesis of some tetrahydroquinoline derivatives and evaluation as anticancer agents // Arabial Journal of Chemistry. 2022. Vol. 16, № 3. Art. 104543. https://doi.org/10.1016/j.arabjc.2023.104543  
  6. Ryczkowska M., Maciejewska N., Olszewski M., Witkowska M., Makowiec S. Tetrahydroquinolinone derivatives exert antiproliferative effect on lung cancer cells through apoptosis induction // Sci. Rep. 2022. Vol. 12. Art. 19076. https://doi.org/10.1038/s41598-022-23640-9  
  7. Ryczkowska M., Maciejewska N., Olszewski M., Witkowska M., Makowiec S. Design, synthesis, and biological evaluation of tetrahydroquinolinones and tetrahydroquinolines with anticancer activity // Sci. Rep. 2022. Vol. 12. Art. 9985. https://doi.org/10.1038/s41598-022-13867-x  
  8. Leal E. S., Pascual M. J., Adler N. S., Arrupe N., Merwaiss F., Giordano L., Fidalgo D., Alvarez D., Bollini M. Unveiling tetrahydroquinolines as promising BVDV entry inhibitors: Targeting the envelope protein // Virology. 2024. Vol. 590. Art. 109968. https://doi.org/10.1016/j.virol.2023.109968  
  9. Bedoya L. M., Abad M. J., Calonge E., Saavedra L. A., Gutirrez M., Kouznetsov V. V., Alcami J., Bermejo P. Quinoline-based compounds as modulators of HIV transcription through NF-κB and Sp1 inhibition // Antiviral Res. 2010. Vol. 87, № 3. P. 338–344. https://doi.org/10.1016/j.antiviral.2010.06.006  
  10. Chander S., Ashok P., Zheng Y. T., Wang P., Raja K. S., Taneja A., Murugesan S. Design, synthesis and in vitro evaluation of novel tetrahydroquinoline carbamates as HIV-1 RT inhibitor and their antifungal activity // Bioorg. Chem. 2016. Vol. 64. P. 66–73. https://doi.org/10.1016/j.bioorg.2015.12.005  
  11. Goli N., Mainkar P. S., Kotapalli S. S., Ummanni T. K. R., Chandrasekhar S. Expanding the tetrahydroquinoline pharmacophore // Bioorg. Med. Chem. Lett. 2017. Vol. 27, № 8. P. 1714–1720. https://doi.org/10.1016/j.bmcl.2017.02.077  
  12. Kumar S., Engman L., Valgimigli L., Amorati R., Fumo M. G., Peduli G. F. Antioxidant profile of ethoxyquin and some of its S, Se, and Te analogues // J. Org. Chem. 2007. Vol. 72, № 16. P. 6046–6055. https://doi.org/10.1021/jo0705465  
  13. Manaklohe G. M., Potapov A. Y., Shikhaliev K. S. Synthesis of new hydroquinolinecarbaldehydes // Russ. Chem. Bull. 2016. Vol. 65, № 4. P. 1145–1147. https://doi.org/10.1007/s11172-016-1427-7  
  14. Манахелохе Г. М. Синтез новых гетероциклических систем на основе формилгидрохинолино
Received: 
25.02.2025
Accepted: 
12.03.2025
Published: 
30.06.2025
Short text (in English):
(downloads: 205)