Известия Саратовского университета. Новая серия.

Серия Химия. Биология. Экология

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Для цитирования:

Смирнов А. К., Шиповская А. Б. Синтез и свойства привитых сополимеров ксантана и глюкоманнана с акриловыми мономерами // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2023. Т. 23, вып. 2. С. 185-196. DOI: 10.18500/1816-9775-2023-23-2-185-196, EDN: DCBOBM

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 116)
Полный текст в формате PDF(En):
(загрузок: 63)
Язык публикации: 
русский
Рубрика: 
Тип статьи: 
Научная статья
УДК: 
547.458.6[544.412.1+544.723.21]
EDN: 
DCBOBM

Синтез и свойства привитых сополимеров ксантана и глюкоманнана с акриловыми мономерами

Авторы: 
Смирнов Антон Константинович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Шиповская Анна Борисовна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Графт-сополимеры полисахаридов с акриловыми мономерами сочетают в себе биоразлагаемость, биосовместимость, экологичность природных полимеров и повышенную термостабильность, химическую и механическую стойкость синтетических полимеров. Осуществлён поиск и анализ литературы на английском языке за 2002–2022 гг., посвящённой привитой полимеризации акриламида, акриловой кислоты и 2-акриламидо-2-метилпропансульфоновой кислоты на макромолекулярные цепи ксантана и глюкоманнана. Выявлено, что синтез привитых цепей сополимеров протекает по механизму радикальной полимеризации с использованием термического гомолитического распада инициатора или микроволнового воздействия, в отдельных случаях – радиационного инициирования, а также фронтальной полимеризации. В зависимости от способа проведения реакции время синтеза графт-сополимера варьируется от нескольких минут до нескольких часов. Рассмотрено влияние условий и параметров синтеза на конверсию мономера, структуру и свойства получаемого полимера. Установлено, что понижение соотношения полисахарид/мономер и повышение концентрации инициатора повышает эффективность и степень прививки. Рассмотрены методы характеризации привитых сополимеров, включающие: инфракрасную спектроскопию для анализа химического строения образца, сканирующую электронную микроскопию для характеристики структуры, надмолекулярного упорядочения и пористости, дифференциально-термический анализ для оценки тепловых эффектов итермической стабильности. Обсуждено влияние условий синтеза и рН сорбционной среды на водопоглощение и сорбционную способность данного класса графт-сополимеров. Обнаружен широкий потенциал привитыхсополимеров к многократному повторению циклов поглощения и выделения жидкой среды без потери функциональных свойств. Это открывает перспективы использования привитых сополимеров ксантана и глюкоманнана с акриловыми мономерами в качестве материалов для очистки вод от ионов металлов и катионных красителей, адресной доставкии пролонгированного действия лекарственных веществ и раневых покрытий для лечения ран.

Список источников: 
  1. Dmour I., Taha M. O. Natural and semisynthetic polymers in pharmaceutical nanotechnology. Organic Materials as Smart Nanocarriers for Drug Deliver, 2018, pp. 35–100. https://doi.org/10.1016/B978-0-12-813663-8.00002-6
  2. Kozlowska J., Prus W., Stachowiak N. Microparticles based on natural and synthetic polymers for cosmetic applications. International Journal of Biological Macromolecules, 2019, vol. 129, pp. 952–956. https://doi.org/10.1016/j.ijbiomac.2019.02.091
  3. Batista R. A., Espitia P. J. P., Quintans J. D. S. S., Freitas M. M., Cerqueira M. Â., Teixeira J. A., Cardoso J. C. Hydrogel as an alternative structure for food packaging systems. Carbohydrate Polymers, 2019, vol. 205, pp. 106–116. https://doi.org/10.1016/j.carbpol.2018.10.006
  4. Zhou L., Zhou H., Yang X. Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment. Separation and Purifi cation Technology, 2019, vol. 210, pp. 93–99. https://doi.org/10.1016/j.seppur.2018.07.089
  5. Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review. Journal of Agricultural and Food Chemistry, 2003, vol. 51, no. 16, pp. 4504–4526. https://doi.org/10.1021/jf030204+
  6. Taeymans D., Wood J., Ashby P., Blank I., Studer A., Stadler R. H., Whitmore T. A review of acrylamide: An industry perspective on research, analysis, formation, and control. Critical Reviews in Food Science and Nutrition, 2004, vol. 44, no. 5, pp. 323–347. https://doi.org/10.1080/10408690490478082
  7. Exon J. H. A review of the toxicology of acrylamide. Journal of Toxicology and Environmental Health, Part B, 2006, vol. 9, no. 5, pp. 397–412. https://doi.org/10.1080/10937400600681430
  8. Kumar D., Gihar S., Shrivash M. K., Kumar P., Kundu P. P. A review on the synthesis of graft copolymers of chitosan and their potential applications. International Journal of Biological Macromolecules, 2020, vol. 163, pp. 2097–2112. https://doi.org/10.1016/j.ijbiomac.2020.09.060
  9. Wang Z., Wu L., Zhou D., Ji P., Zhou X., Zhang Y., He P. Synthesis and Water Absorbing Properties of KGM-g-P (AA-AM-(DMAEA-EB)) via Grafting Polymerization Method. Polymer Science, Series B, 2020, vol. 62, pp. 238–244. https://doi.org/10.1134/S1560090420030185
  10. Gou S., Li S., Feng M., Zhang Q., Pan Q., Wen J., Guo Q. Novel biodegradable graft-modifi ed water-soluble copolymer using acrylamide and konjac glucomannan for enhanced oil recovery. Industrial & Engineering Chemistry Research, 2017, vol. 56, no. 4, pp. 942–951. https://doi.org/10.1021/acs.iecr.6b04649
  11. Li X., Xiao N., Xiao G., Bai W., Zhang X., Zhao W. Lemon essential oil/vermiculite encapsulated in electro spun konjac glucomannan-grafted-poly (acrylic acid)/ polyvinyl alcohol bacteriostatic pad: Sustained control release and its application in food preservation. Food Chemistry, 2021, vol. 348, pp. 129021. https://doi.org/10.1016/j.foodchem.2021.129021
  12. Zheng M., Lian F., Xiong Y., Liu B., Zhu Y., Miao S., Zheng B. The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel. Food Chemistry, 2019, vol. 272, pp. 574–579. https://doi.org/10.1016/j.foodchem.2018.08.083
  13. Biswas A., Pal S., Udayabhanu G. Experimental and theoretical studies of xanthan gum and its graft copolymer as corrosion inhibitor for mild steel in 15% HCl. Applied Surface Science, 2015, vol. 353, pp. 173–183. https://doi.org/10.1016/j.apsusc.2015.06.128
  14. Jyothi A. N. Starch graft copolymers: novel applications in industry. Composite Interfaces, 2010, vol. 17, no. 2-3, pp. 165–174. https://doi.org/10.1163/092764410X490581
  15. Singh B., Sharma V. Designing galacturonic acid/ arabinogalactan crosslinked poly (vinyl pyrrolidone)-co-poly (2-acrylamido-2-methylpropane sulfonic acid) polymers: Synthesis, characterization and drug delivery application. Polymer, 2016, vol. 91, pp. 50–61. https://doi.org/10.1016/j.polymer.2016.03.037
  16. Deshmukh S. R., Singh R. P. Drag reduction characteristics of graft copolymers of xanthan gum and polyacrylamide. Journal of Applied Polymer Science, 1986, vol. 32, no. 8, pp. 6163–6176. https://doi.org/10.1002/app.1986.070320803
  17. Kumar P., Choonara Y. E., du Toit L. C., Modi G., Naidoo D., Pillay V. Novel high-viscosity polyacrylamidated chitosan for neural tissue engineering: Fabrication of anisotropic neurodurable scaffold via molecular disposition of persulfate-mediated polymer slicing and complexation. International Journal of Molecular Sciences, 2012, vol. 13, no. 11, pp. 13966–13984. https://doi.org/10.3390/ijms131113966
  18. Meimoun J., Wiatz V., Saint-Loup R., Parcq J., Favrelle A., Bonnet F., Zinck P. Modifi cation of starch by graft copolymerization. Starch-Stärke, 2018, vol. 70, no. 1–2. https://doi.org/10.1002/star.201600351
  19. Kang H., Liu R., Huang Y. Graft modifi cation of cellulose: Methods, properties and applications. Polymer, 2015, vol. 70, pp. A1–A16. https://doi.org/10.1016/j. polymer.2015.05.041
  20. Becker A., Katzen F., Pühler A., Ielpi L. Xanthan gum biosynthesis and application: A biochemical/genetic perspective. Applied Microbiology and Biotechnology, 1998, vol. 50, pp. 145–152. https://doi.org/10.1007/s002530051269
  21.  Thomas W. R. Konjac gum. Thickening and Gelling Agents for Food, 1997, pp. 169–179. https://doi.org/10.1007/978-1-4615-2197-6_8
  22. Makhado E., Pandey S., Ramontja J. Microwaveassisted green synthesis of xanthan gum grafted diethylamino ethyl methacrylate: An effi cient adsorption of hexavalent chromium. Carbohydrate Polymers, 2019, vol. 222. https://doi.org/10.1016/j.carbpol.2019.114989
  23. Chen X., Li P., Kang Y., Zeng X., Xie Y., Zhang Y., Xie T. Preparation of temperature-sensitive Xanthan/ NIPA hydrogel using citric acid as crosslinking agent for bisphenol adsorption. Carbohydrate Polymers, 2019, vol. 206, pp. 94–101. https://doi.org/10.1016/j.carbpol.2018.10.092
  24. Ghorai S., Sarkar A. K., Pal S. Rapid adsorptive removal of toxic Pb2+ ion from aqueous solution using recyclable, biodegradable nanocomposite derived from templated partially hydrolyzed xanthan gum and nanosilica. Bioresource Technology, 2014, vol. 170, pp. 578–582. https://doi.org/10.1016/j.biortech.2014.08.010 2
  25. Ghorai S., Sarkar A. K., Panda A. B., Pal S. Effective removal of Congo red dye from aqueous solution using modifi ed xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresource Technology, 2013, vol. 144, pp. 485–491. https://doi.org/10.1016/j.biortech.2013.06.108
  26. Makhado E., Pandey S., Nomngongo P. N., Ramontja J. Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution. Carbohydrate Polymers, 2017, vol. 176, pp. 315–326. https://doi.org/10.1016/j.carbpol.2017.08.093
  27. Jindal R., Kaith B. S., Mittal H. Rapid synthesis of acrylamide onto xanthan gum based hydrogels under microwave radiations for enhanced thermal and chemical modifications. Polymers from Renewable Resources, 2011, vol. 2, no. 3, pp. 105–116. https://doi.org/10.1177/204124791100200302
  28. Srivastava A., Behari K. Synthesis and study of metal ion sorption capacity of xanthan gum-g-2-acrylamido2-methyl-1-propane sulphonic acid. Journal of Applied Polymer Science, 2007, vol. 104, no. 1, pp. 470–478. https://doi.org/10.1002/app.24760
  29. Patel A. Synthesis of acrylamide grafted xanthan gum by microwave assisted method: ftir characteristics and acute oral toxicity study. An International Journal of Pharmaceutical Sciences, 2016, vol. 7, no. 1, pp. 129–145.
  30. Srivastava A., Behari K. Modification of natural polymer via free radical graft copolymerization of 2-acrylamido-2-methyl-1-propane sulfonic acid in aqueous media and study of swelling and metal ion sorption behavior. Journal of Applied Polymer Science, 2009, vol. 114, no. 3, pp. 1426–1434. https://doi.org/10.1002/ app.30006
  31. Deshmukh S. R., Singh R. P. Drag reduction characteristics of graft copolymers of xanthan gum and polyacrylamide. Journal of Applied Polymer Science, 1986, vol. 32, no. 8, pp. 6163–6176. https://doi.org/10.1002/app.1986.070320803
  32. Kulkarni R. V., Sa B. Electroresponsive polyacrylamidegrafted-xanthan hydrogels for drug delivery. Journal of Bioactive and Compatible Polymers, 2009, vol. 24, no. 4, pp. 368–384. https://doi.org/10.1177/0883911509104475
  33. Kulkarni R. V., Sa B. Enteric delivery of ketoprofen through functionally modified poly (acrylamidegrafted-xanthan)-based pH-sensitive hydrogel beads: preparation, in vitro and in vivo evaluation. Journal of Drug Targeting, 2008, vol. 16, no. 2, pp. 167–177. https://doi.org/10.1080/10611860701792399
  34. Mundargi R. C., Patil S. A., Aminabhavi T. M. Evaluation of acrylamide-grafted-xanthan gum copolymer matrix tablets for oral controlled delivery of antihypertensive drugs. Carbohydrate Polymers, 2007, vol. 69, no. 1, pp. 130–141. https://doi.org/10.1016/j.carbpol.2006.09.007
  35. Anjum F., Bukhari S. A., Siddique M., Shahid M., Potgieter J. H., Jaafar H. Z., Zia-Ul-Haq M. Microwave Irradiated Copolymerization of Xanthan Gum with Acrylamide for Colonic Drug Delivery. BioResource, 2015, vol. 10, no. 1, pp. 1434–1451.
  36. Kumar A., Singh K., Ahuja M. Xanthan-g-poly (acrylamide): Microwave-assisted synthesis, characterization and in vitro release behavior. Carbohydrate Polymers, 2009, vol. 76, no. 2, pp. 261–267. https://doi. org/10.1016/j.carbpol.2008.10.014
  37. Wang H., Wei D., Wan Z., Du Q., Zhang B., Ling M., Liang C. Epoxy and amide crosslinked polarity enhanced polysaccharides binder for silicon anode in lithium-ion batteries. Electrochimica Acta, 2021, vol. 368, pp. 137– 145. https://doi.org/10.1016/j.electacta.2020.137580
  38. Chen L. G., Liu Z. L., Zhuo R. X. Synthesis and properties of degradable hydrogels of konjac glucomannan grafted acrylic acid for colon-specifi c drug delivery. Polymer, 2005, vol. 46, no. 16, pp. 6274–6281. https:// doi.org/10.1016/j.polymer.2005.05.041
  39. Xu Z., Yang Y., Jiang Y., Sun Y., Shen Y., Pang J. Synthesis and Characterization of Konjac Glucomannan-GraftPolyacrylamide via γ-Irradiation. Molecules, 2008, vol. 13, no. 3, pp. 490–500. https://doi.org/10.3390/ molecules13030490
  40. Wu J., Deng X., Lin X. Swelling characteristics of konjac glucomannan superabsobent synthesized by radiation-induced graft copolymerization. Radiation Physics and Chemistry, 2013, vol. 83, pp. 90–97. https:// doi.org/10.1016/j.radphyschem.2012.09.026
  41. Xie C., Feng Y., Cao W., Teng H., Li J., Lu Z. Novel biodegradable fl occulating agents prepared by grafting polyacrylamide to konjac. Journal of Applied Polymer Science, 2009, vol. 111, no. 5, pp. 2527–2536. https://doi.org/10.1002/app.29198
  42. Tian D. T., Li S. R., Liu X. P., Wang J. S., Hu S., Liu C. M., Xie H. Q. Preparation of superabsorbent based on the graft copolymerization of acrylic acid and acrylamide onto konjac glucomannan and its application in the water retention in soils. Journal of Applied Polymer Science, 2012, vol. 125, no. 4, pp. 2748–2754. https:// doi.org/10.1002/app.36603
  43. Li J., Zhang X., Chen J., Xia J., Ma M., Li B. Frontal polymerization synthesis and characterization of konjac glucomannan-graft-acrylic acid polymers. Journal of Polymer Science Part A: Polymer Chemistry, 2009, vol. 47, no. 13, pp. 3391–3398. https://doi.org/10.1002/pola.23416
  44.  Li J., Ji J., Xia J., Li B. Preparation of konjac glucomannan-based superabsorbent polymers by frontal polymerization. Carbohydrate Polymer, 2012, vol. 87, no. 1, pp. 757–763. https://doi.org/10.1016/j.carbpol.2011.08.060
  45. Xiao C., Lu Y., Zhang L. Preparation and physical properties of konjac glucomannan–polyacrylamide blend fi lms. Journal of Applied Polymer Science, 2001, vol. 81, no. 4, pp. 882–888. https://doi.org/10.1002/app.1507
  46. Gohari R. M., Safarnia M., Koohi A. D., Salehi M. B. Adsorptive removal of cationic dye by synthesized sustainable xanthan gum-g p (AMPS-co-AAm) hydrogel from aqueous media: Optimization by RSM-CCD model. Chemical Engineering Research and Design, 2022, vol. 188, pp. 714–728. https://doi.org/10.1016/j.cherd.2022.10.028
  47. Tang S., Gong Z., Wang Z., Gao X., Zhang X. Multifunctional hydrogels for wound dressings using xanthan gum and polyacrylamide. International Journal of Biological Macromolecules, 2022, vol. 217, pp. 944–955. https://doi.org/10.1016/j.ijbiomac.2022.07.181
  48. Wen X., Cao X., Yin Z., Wang T., Zhao C. Preparation and characterization of konjac glucomannan–poly (acrylic acid) IPN hydrogels for controlled release. Carbohydrate Polymers, 2009, vol. 78, no. 2, pp. 193–198. https://doi.org/10.1016/j.carbpol.2009.04.001
  49. Liu Z. L., Hu H., Zhuo R. X. Konjac glucomannangraft-acrylic acid hydrogels containing azocrosslinker for colon-specifi c delivery. Journal of Polymer Science Part A: Polymer Chemistry, 2004, vol. 42, no. 17, pp. 4370–4378. https://doi.org/10.1002/pola.20272
Поступила в редакцию: 
01.03.2023
Принята к публикации: 
10.03.2023
Опубликована: 
30.06.2023
Краткое содержание:
(загрузок: 28)