Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

For citation:

Smirnov A. K., Shipovskaya A. B. Synthesis and properties of grafted copolymers of xanthan and glucomannan with acrylic monomers. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 2, pp. 185-196. DOI: 10.18500/1816-9775-2023-23-2-185-196, EDN: DCBOBM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 174)
Полный текст в формате PDF(En):
(downloads: 71)
Article type: 

Synthesis and properties of grafted copolymers of xanthan and glucomannan with acrylic monomers

Smirnov Anton K. , Saratov State University
Shipovskaya Anna B., Saratov State University

Graft copolymers of polysaccharides with acrylic monomers combine biodegradability, biocompatibility, the environmental friendliness of natural polymers and the increased thermal stability, chemical and mechanical resistance of synthetic polymers. This paper describes our search and analysis of the literature in English for 2002–2022 devoted to the graft polymerization of acrylamide, acrylic acid and 2-acrylamido2-methylpropanesulfonic acid onto xanthan and glucomannan macromolecular chains. It has been found that the synthesis of grafted copolymer chains proceeds by a radical polymerization mechanism using thermal homolytic decomposition of the initiator or microwave irradiation, or radiation initiation and frontal polymerization in some cases. Depending on the method of the reaction, the synthesis time of a graft copolymer varies from several minutes to several hours. The infl uence of the synthesis conditions and parameters on the monomer conversion, structure and properties of the resulting polymer has been considered. It has been found that decreasing the polysaccharide/monomer ratio and increasing the initiator concentration raise the effi ciency and degree of grafting. Several methods for characterization of graft copolymers are discussed, including: IR spectroscopy to analyze the chemical structure of a sample, scanning electron microscopy to characterize structure, supramolecular ordering and porosity, diff erential thermal analysis to evaluate thermal eff ects and thermal stability. The eff ect of the synthesis conditions and the pH of the sorption medium on the water absorption and sorption capacity of this class of graft copolymers are discussed. The broad potential of graft copolymers for repeated cycles of absorption and release of liquid medium without loss of functional properties has been found. This opens prospects for the use of graft copolymers of xanthan and glucomannan with acrylic monomers as materials for water purifi cation from metal ions and cationic dyes, targeted delivery and prolonged action of drugs and wound coatings for wound treatment.

  1. Dmour I., Taha M. O. Natural and semisynthetic polymers in pharmaceutical nanotechnology. Organic Materials as Smart Nanocarriers for Drug Deliver, 2018, pp. 35–100. https://doi.org/10.1016/B978-0-12-813663-8.00002-6
  2. Kozlowska J., Prus W., Stachowiak N. Microparticles based on natural and synthetic polymers for cosmetic applications. International Journal of Biological Macromolecules, 2019, vol. 129, pp. 952–956. https://doi.org/10.1016/j.ijbiomac.2019.02.091
  3. Batista R. A., Espitia P. J. P., Quintans J. D. S. S., Freitas M. M., Cerqueira M. Â., Teixeira J. A., Cardoso J. C. Hydrogel as an alternative structure for food packaging systems. Carbohydrate Polymers, 2019, vol. 205, pp. 106–116. https://doi.org/10.1016/j.carbpol.2018.10.006
  4. Zhou L., Zhou H., Yang X. Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment. Separation and Purifi cation Technology, 2019, vol. 210, pp. 93–99. https://doi.org/10.1016/j.seppur.2018.07.089
  5. Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review. Journal of Agricultural and Food Chemistry, 2003, vol. 51, no. 16, pp. 4504–4526. https://doi.org/10.1021/jf030204+
  6. Taeymans D., Wood J., Ashby P., Blank I., Studer A., Stadler R. H., Whitmore T. A review of acrylamide: An industry perspective on research, analysis, formation, and control. Critical Reviews in Food Science and Nutrition, 2004, vol. 44, no. 5, pp. 323–347. https://doi.org/10.1080/10408690490478082
  7. Exon J. H. A review of the toxicology of acrylamide. Journal of Toxicology and Environmental Health, Part B, 2006, vol. 9, no. 5, pp. 397–412. https://doi.org/10.1080/10937400600681430
  8. Kumar D., Gihar S., Shrivash M. K., Kumar P., Kundu P. P. A review on the synthesis of graft copolymers of chitosan and their potential applications. International Journal of Biological Macromolecules, 2020, vol. 163, pp. 2097–2112. https://doi.org/10.1016/j.ijbiomac.2020.09.060
  9. Wang Z., Wu L., Zhou D., Ji P., Zhou X., Zhang Y., He P. Synthesis and Water Absorbing Properties of KGM-g-P (AA-AM-(DMAEA-EB)) via Grafting Polymerization Method. Polymer Science, Series B, 2020, vol. 62, pp. 238–244. https://doi.org/10.1134/S1560090420030185
  10. Gou S., Li S., Feng M., Zhang Q., Pan Q., Wen J., Guo Q. Novel biodegradable graft-modifi ed water-soluble copolymer using acrylamide and konjac glucomannan for enhanced oil recovery. Industrial & Engineering Chemistry Research, 2017, vol. 56, no. 4, pp. 942–951. https://doi.org/10.1021/acs.iecr.6b04649
  11. Li X., Xiao N., Xiao G., Bai W., Zhang X., Zhao W. Lemon essential oil/vermiculite encapsulated in electro spun konjac glucomannan-grafted-poly (acrylic acid)/ polyvinyl alcohol bacteriostatic pad: Sustained control release and its application in food preservation. Food Chemistry, 2021, vol. 348, pp. 129021. https://doi.org/10.1016/j.foodchem.2021.129021
  12. Zheng M., Lian F., Xiong Y., Liu B., Zhu Y., Miao S., Zheng B. The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel. Food Chemistry, 2019, vol. 272, pp. 574–579. https://doi.org/10.1016/j.foodchem.2018.08.083
  13. Biswas A., Pal S., Udayabhanu G. Experimental and theoretical studies of xanthan gum and its graft copolymer as corrosion inhibitor for mild steel in 15% HCl. Applied Surface Science, 2015, vol. 353, pp. 173–183. https://doi.org/10.1016/j.apsusc.2015.06.128
  14. Jyothi A. N. Starch graft copolymers: novel applications in industry. Composite Interfaces, 2010, vol. 17, no. 2-3, pp. 165–174. https://doi.org/10.1163/092764410X490581
  15. Singh B., Sharma V. Designing galacturonic acid/ arabinogalactan crosslinked poly (vinyl pyrrolidone)-co-poly (2-acrylamido-2-methylpropane sulfonic acid) polymers: Synthesis, characterization and drug delivery application. Polymer, 2016, vol. 91, pp. 50–61. https://doi.org/10.1016/j.polymer.2016.03.037
  16. Deshmukh S. R., Singh R. P. Drag reduction characteristics of graft copolymers of xanthan gum and polyacrylamide. Journal of Applied Polymer Science, 1986, vol. 32, no. 8, pp. 6163–6176. https://doi.org/10.1002/app.1986.070320803
  17. Kumar P., Choonara Y. E., du Toit L. C., Modi G., Naidoo D., Pillay V. Novel high-viscosity polyacrylamidated chitosan for neural tissue engineering: Fabrication of anisotropic neurodurable scaffold via molecular disposition of persulfate-mediated polymer slicing and complexation. International Journal of Molecular Sciences, 2012, vol. 13, no. 11, pp. 13966–13984. https://doi.org/10.3390/ijms131113966
  18. Meimoun J., Wiatz V., Saint-Loup R., Parcq J., Favrelle A., Bonnet F., Zinck P. Modifi cation of starch by graft copolymerization. Starch-Stärke, 2018, vol. 70, no. 1–2. https://doi.org/10.1002/star.201600351
  19. Kang H., Liu R., Huang Y. Graft modifi cation of cellulose: Methods, properties and applications. Polymer, 2015, vol. 70, pp. A1–A16. https://doi.org/10.1016/j. polymer.2015.05.041
  20. Becker A., Katzen F., Pühler A., Ielpi L. Xanthan gum biosynthesis and application: A biochemical/genetic perspective. Applied Microbiology and Biotechnology, 1998, vol. 50, pp. 145–152. https://doi.org/10.1007/s002530051269
  21.  Thomas W. R. Konjac gum. Thickening and Gelling Agents for Food, 1997, pp. 169–179. https://doi. org/10.1007/978-1-4615-2197-6_8
  22. Makhado E., Pandey S., Ramontja J. Microwaveassisted green synthesis of xanthan gum grafted diethylamino ethyl methacrylate: An effi cient adsorption of hexavalent chromium. Carbohydrate Polymers, 2019, vol. 222. https://doi.org/10.1016/j.carbpol.2019.114989
  23. Chen X., Li P., Kang Y., Zeng X., Xie Y., Zhang Y., Xie T. Preparation of temperature-sensitive Xanthan/ NIPA hydrogel using citric acid as crosslinking agent for bisphenol adsorption. Carbohydrate Polymers, 2019, vol. 206, pp. 94–101. https://doi.org/10.1016/j.carbpol.2018.10.092
  24. Ghorai S., Sarkar A. K., Pal S. Rapid adsorptive removal of toxic Pb2+ ion from aqueous solution using recyclable, biodegradable nanocomposite derived from templated partially hydrolyzed xanthan gum and nanosilica. Bioresource Technology, 2014, vol. 170, pp. 578–582. https://doi.org/10.1016/j.biortech.2014.08.010 2
  25. Ghorai S., Sarkar A. K., Panda A. B., Pal S. Effective removal of Congo red dye from aqueous solution using modifi ed xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresource Technology, 2013, vol. 144, pp. 485–491. https://doi.org/10.1016/j.biortech.2013.06.108
  26. Makhado E., Pandey S., Nomngongo P. N., Ramontja J. Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution. Carbohydrate Polymers, 2017, vol. 176, pp. 315–326. https://doi.org/10.1016/j.carbpol.2017.08.093
  27. Jindal R., Kaith B. S., Mittal H. Rapid synthesis of acrylamide onto xanthan gum based hydrogels under microwave radiations for enhanced thermal and chemical modifications. Polymers from Renewable Resources, 2011, vol. 2, no. 3, pp. 105–116. https://doi.org/10.1177/204124791100200302
  28. Srivastava A., Behari K. Synthesis and study of metal ion sorption capacity of xanthan gum-g-2-acrylamido2-methyl-1-propane sulphonic acid. Journal of Applied Polymer Science, 2007, vol. 104, no. 1, pp. 470–478. https://doi.org/10.1002/app.24760
  29. Patel A. Synthesis of acrylamide grafted xanthan gum by microwave assisted method: ftir characteristics and acute oral toxicity study. An International Journal of Pharmaceutical Sciences, 2016, vol. 7, no. 1, pp. 129–145.
  30. Srivastava A., Behari K. Modification of natural polymer via free radical graft copolymerization of 2-acrylamido-2-methyl-1-propane sulfonic acid in aqueous media and study of swelling and metal ion sorption behavior. Journal of Applied Polymer Science, 2009, vol. 114, no. 3, pp. 1426–1434. https://doi.org/10.1002/ app.30006
  31. Deshmukh S. R., Singh R. P. Drag reduction characteristics of graft copolymers of xanthan gum and polyacrylamide. Journal of Applied Polymer Science, 1986, vol. 32, no. 8, pp. 6163–6176. https://doi.org/10.1002/app.1986.070320803
  32. Kulkarni R. V., Sa B. Electroresponsive polyacrylamidegrafted-xanthan hydrogels for drug delivery. Journal of Bioactive and Compatible Polymers, 2009, vol. 24, no. 4, pp. 368–384. https://doi.org/10.1177/0883911509104475
  33. Kulkarni R. V., Sa B. Enteric delivery of ketoprofen through functionally modified poly (acrylamidegrafted-xanthan)-based pH-sensitive hydrogel beads: preparation, in vitro and in vivo evaluation. Journal of Drug Targeting, 2008, vol. 16, no. 2, pp. 167–177. https://doi.org/10.1080/10611860701792399
  34. Mundargi R. C., Patil S. A., Aminabhavi T. M. Evaluation of acrylamide-grafted-xanthan gum copolymer matrix tablets for oral controlled delivery of antihypertensive drugs. Carbohydrate Polymers, 2007, vol. 69, no. 1, pp. 130–141. https://doi.org/10.1016/j. carbpol.2006.09.007
  35. Anjum F., Bukhari S. A., Siddique M., Shahid M., Potgieter J. H., Jaafar H. Z., Zia-Ul-Haq M. Microwave Irradiated Copolymerization of Xanthan Gum with Acrylamide for Colonic Drug Delivery. BioResource, 2015, vol. 10, no. 1, pp. 1434–1451.
  36. Kumar A., Singh K., Ahuja M. Xanthan-g-poly (acrylamide): Microwave-assisted synthesis, characterization and in vitro release behavior. Carbohydrate Polymers, 2009, vol. 76, no. 2, pp. 261–267. https://doi. org/10.1016/j.carbpol.2008.10.014
  37. Wang H., Wei D., Wan Z., Du Q., Zhang B., Ling M., Liang C. Epoxy and amide crosslinked polarity enhanced polysaccharides binder for silicon anode in lithium-ion batteries. Electrochimica Acta, 2021, vol. 368, pp. 137– 145. https://doi.org/10.1016/j.electacta.2020.137580
  38. Chen L. G., Liu Z. L., Zhuo R. X. Synthesis and properties of degradable hydrogels of konjac glucomannan grafted acrylic acid for colon-specifi c drug delivery. Polymer, 2005, vol. 46, no. 16, pp. 6274–6281. https:// doi.org/10.1016/j.polymer.2005.05.041
  39. Xu Z., Yang Y., Jiang Y., Sun Y., Shen Y., Pang J. Synthesis and Characterization of Konjac Glucomannan-GraftPolyacrylamide via γ-Irradiation. Molecules, 2008, vol. 13, no. 3, pp. 490–500. https://doi.org/10.3390/ molecules13030490
  40. Wu J., Deng X., Lin X. Swelling characteristics of konjac glucomannan superabsobent synthesized by radiation-induced graft copolymerization. Radiation Physics and Chemistry, 2013, vol. 83, pp. 90–97. https:// doi.org/10.1016/j.radphyschem.2012.09.026
  41. Xie C., Feng Y., Cao W., Teng H., Li J., Lu Z. Novel biodegradable fl occulating agents prepared by grafting polyacrylamide to konjac. Journal of Applied Polymer Science, 2009, vol. 111, no. 5, pp. 2527–2536. https://doi.org/10.1002/app.29198
  42. Tian D. T., Li S. R., Liu X. P., Wang J. S., Hu S., Liu C. M., Xie H. Q. Preparation of superabsorbent based on the graft copolymerization of acrylic acid and acrylamide onto konjac glucomannan and its application in the water retention in soils. Journal of Applied Polymer Science, 2012, vol. 125, no. 4, pp. 2748–2754. https:// doi.org/10.1002/app.36603
  43. Li J., Zhang X., Chen J., Xia J., Ma M., Li B. Frontal polymerization synthesis and characterization of konjac glucomannan-graft-acrylic acid polymers. Journal of Polymer Science Part A: Polymer Chemistry, 2009, vol. 47, no. 13, pp. 3391–3398. https://doi.org/10.1002/pola.23416
  44.  Li J., Ji J., Xia J., Li B. Preparation of konjac glucomannan-based superabsorbent polymers by frontal polymerization. Carbohydrate Polymer, 2012, vol. 87, no. 1, pp. 757–763. https://doi.org/10.1016/j.carbpol.2011.08.060
  45. Xiao C., Lu Y., Zhang L. Preparation and physical properties of konjac glucomannan–polyacrylamide blend fi lms. Journal of Applied Polymer Science, 2001, vol. 81, no. 4, pp. 882–888. https://doi.org/10.1002/app.1507
  46. Gohari R. M., Safarnia M., Koohi A. D., Salehi M. B. Adsorptive removal of cationic dye by synthesized sustainable xanthan gum-g p (AMPS-co-AAm) hydrogel from aqueous media: Optimization by RSM-CCD model. Chemical Engineering Research and Design, 2022, vol. 188, pp. 714–728. https://doi.org/10.1016/j.cherd.2022.10.028
  47. Tang S., Gong Z., Wang Z., Gao X., Zhang X. Multifunctional hydrogels for wound dressings using xanthan gum and polyacrylamide. International Journal of Biological Macromolecules, 2022, vol. 217, pp. 944–955. https://doi.org/10.1016/j.ijbiomac.2022.07.181
  48. Wen X., Cao X., Yin Z., Wang T., Zhao C. Preparation and characterization of konjac glucomannan–poly (acrylic acid) IPN hydrogels for controlled release. Carbohydrate Polymers, 2009, vol. 78, no. 2, pp. 193–198. https://doi.org/10.1016/j.carbpol.2009.04.001
  49. Liu Z. L., Hu H., Zhuo R. X. Konjac glucomannangraft-acrylic acid hydrogels containing azocrosslinker for colon-specifi c delivery. Journal of Polymer Science Part A: Polymer Chemistry, 2004, vol. 42, no. 17, pp. 4370–4378. https://doi.org/10.1002/pola.20272
Short text (in English):
(downloads: 39)