Для цитирования:
Цветкова О. Ю., Жуков Д. Н., Смирнова Т. Д., Штыков С. Н. Синтез и некоторые свойства коллоидных квантовых точек селенида ртути // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2022. Т. 22, вып. 3. С. 262-266. DOI: 10.18500/1816-9775-2022-22-3-262-266
Синтез и некоторые свойства коллоидных квантовых точек селенида ртути
Предложен синтез коллоидных квантовых точек селенида ртути с использованием в качестве прекурсора оксида ртути. Предлагаемый способ отличается использованием в реакционной смеси менее токсичного компонента – оксида ртути. Методом просвечивающей электронной микроскопии установлен средний диаметр 5–6 нм и форма квантовых точек. Представлена гистограмма распределения синтезированных наночастиц по размерам. Важным свойством синтезированных наночастиц является кристаллическая структура, установленная рентгеноструктурным анализом. Установленные свойства синтезированных нанокристаллов совпадают с литературными данными. Элементный состав наночастиц контролировали с помощью рентгеновского микроанализа. Установлено, что химический состав квантовых точек соответствует стехиометрическому соотношению элементов Hg:Se = 0,98:1,00. Кроме того, из рентгенограммы следует, что содержание кислорода идентифицировано в соединениях кремния и углерода, квантовые точки на основе HgSe не содержат следов окисления. Оптические свойства квантовых точек зависят от размера наночастиц. В случае, если средний диаметр не превышает 10 нм, частицы селенида ртути характеризуются монокристаллической структурой с внутризонным поглощением, спектральное распределение энергии которого подвергается размерному квантованию. Как видно изспектров поглощения, синтезированные наночастицы характеризуются полосами поглощения в ИК-области, в диапазоне длин волн до 40 мкм. Синтезированные квантовые точки не обладают люминесцентными свойствами, что связано, согласно литературным данным, с низкой вероятностью образования экситонов для наночастиц малых размеров (5–6 нм).
- Бричкин С. Б., Разумов В. Б. Коллоидные квантовые точки: синтез, свойства и применение // Успехи химии. 2016. Т. 85, № 12. С. 1297–1312. https://doi. org/10.1070/RCR4656
- Матюшкин Л. Б., Александрова О. А., Максимов А. И., Мошников В. А., Мусихин С. Ф. Особенности синтеза люминесцирующих полупроводниковых наночастиц в полярных и неполярных средах // Биотехносфера. 2013. Т. 2, № 28. С. 27–32.
- Efros A. L., Brus L. E. Nanocrystal quantum dots: from discovery to modern development // ACS Nano. 2021. Vol. 15, № 4. P. 6192–6210. https://doi. org/10.1021/acsnano.1c01399
- Gréboval Ch., Chu A, Goubet N., Livache C., Ithurria S. Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration // Chem. Rev. 2021. Vol. 121, № 7. P. 3627–3700. https://doi. org/10.1021/acs.chemrev.0c01120
- Lhuillier E., Guyot-Sionnest P. Recent Progresses in Mid Infrared Nanocrystal based Optoelectronics // IEEE J. Select Topics Quantum Electron. 2017. Vol. 23, № 5. P. 6000208. https://dx.doi.org/10.1109/JSTQE. 2017. 2690838
- Жуков А. Е. Лазеры и микролазеры на основе квантовых точек. СПб. : Политех-Пресс, 2019. 42 с.
- Yuval Y., Matthew A. Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas // Applied Physics Letters. 2017. Vol. 110, № 4. P. 041106/1– 041106/4. http://dx.doi.org/10.1063/1.4975058
- Xin T., Guang fu W. Plasmon resonance enhanced colloidal HgSe quantum dot fi lterless narrowband photodetectors for mid-wave infrared // J. Materials Chemistry C: Materials for Optical and Electronic Devices. 2017. Vol. 5, № 2. P. 362–369. https://doi.org/10.1039/ c6tc04248a
- Chu A., Greboval Ch., Goubet N. Near Unity Absorption in Nanocrystal Based Short Wave Infrared Photodetectors Using Guided Mode Resonators // ACS Photonics. 2019. Vol. 6, № 10. P. 2553–2561. https:// doi.org/10.1021/acsphotonics.9b01015
- Жуков Н. Д., Смирнова Т. Д., Хазанов A. А., Цветкова О. Ю., Штыков С. Н. Свойства полупроводниковых коллоидных квантовых точек, полученных в условиях управляемого синтеза // Физика и техника полупроводников 2021. Т. 55, № 12. С. 1203–1209. https://doi.org/10.21883/FTP.2021.12.51706.9704
- Жуков Н. Д., Гавриков М. В., Кабанов В. Ф., Ягудин И. Т. Одноэлектронный эмиссионно-инжекционный транспорт в микроструктуре с коллоидными квантовыми точками узкозонных полупроводников // Физика и техника полупроводников. 2021. Т. 55, № 4. С. 319–325. http://dx.doi.org/10.21883/ FTP.2021.04.50732.9552
- Martinez B., Livache C., Notemgnou L. D. M. Envi ronmentally Friendly Plasma-Treated PEDOT: PSS as Electrodes for ITO-Free Perovskite Solar Cells // ACS Appl. Mater. Interfaces. 2017. Vol. 9, № 41. P. 36173–3683. https://doi.org/10.1021/acsami.7b10987
- Kristl M., Drofenik M. Sonochemical synthesis of nanocrystalline mercury sulfi de, selenide and telluride in aqueous solutions // Ultrason. Sonochem. 2008. Vol. 15. P. 695–699. https://doi.org/10.1016/j.ultsonch.2008.02.007