Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

For citation:

Tsvetkova O. Y., Zhukov D. N., Smirnova T. D., Shtykov S. N. Synthesis and some properties of colloidal quantum dots of mercury selenide. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 3, pp. 262-266. DOI: 10.18500/1816-9775-2022-22-3-262-266

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 35)
Article type: 

Synthesis and some properties of colloidal quantum dots of mercury selenide

Tsvetkova Olga Yu., OOO “NPP Volga”
Zhukov Dmitriy N., OOO “NPP Volga”
Smirnova Tatiana D., Saratov State University
Shtykov Sergey N., Saratov State University

The synthesis of colloidal quantum dots of mercury selenide using mercury oxide as a precursor is proposed. The proposed method is characterized by the use of a less toxic component in the reaction mixture - mercury oxide. The transmission electron microscopy method established an average diameter of 5–6 nm and the shape of quantum dots. A histogram of the size distribution of synthesized nanoparticles is presented. An important property of the synthesized nanoparticles is the crystal structure established by X-ray diff raction analysis. The established properties of the synthesized nanocrystals coincide with the literature data. The elemental composition of the nanoparticles was controlled by X-ray microanalysis. It is established that the chemical composition of quantum dots corresponds to the stoichiometric ratio of Hg elements : Se = 0,98 : 1,00. In addition, it follows from the X-ray that the oxygen content has been identifi ed in silicon and carbon compounds, HgSe-based quantum dots do not contain traces of oxidation. The optical properties of quantum dots depend on the size of the nanoparticles. If the average diameter does not exceed 10 nm, mercury selenide particles are characterized by a monocrystalline structure with intraband absorption, the spectral energy distribution of which is subjected to dimensional quantization. As can be seen from the absorption spectra, the synthesized nanoparticles are characterized by absorption bands in the IR region, in the wavelength range up to 40 microns. The synthesized quantum dots do not possess luminescent properties, which, according to the literature data, is associated with a low probability of exciton formation for small nanoparticles (5–6 nm).

  1. Бричкин С. Б., Разумов В. Б. Коллоидные квантовые точки: синтез, свойства и применение // Успехи химии. 2016. Т. 85, № 12. С. 1297–1312. https://doi. org/10.1070/RCR4656
  2. Матюшкин Л. Б., Александрова О. А., Максимов А. И., Мошников В. А., Мусихин С. Ф. Особенности синтеза люминесцирующих полупроводниковых наночастиц в полярных и неполярных средах // Биотехносфера. 2013. Т. 2, № 28. С. 27–32.
  3. Efros A. L., Brus L. E. Nanocrystal quantum dots: from discovery to modern development // ACS Nano. 2021. Vol. 15, № 4. P. 6192–6210. https://doi. org/10.1021/acsnano.1c01399
  4. Gréboval Ch., Chu A, Goubet N., Livache C., Ithurria S. Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration // Chem. Rev. 2021. Vol. 121, № 7. P. 3627–3700. https://doi. org/10.1021/acs.chemrev.0c01120
  5. Lhuillier E., Guyot-Sionnest P. Recent Progresses in Mid Infrared Nanocrystal based Optoelectronics // IEEE J. Select Topics Quantum Electron. 2017. Vol. 23, № 5. P. 6000208. https://dx.doi.org/10.1109/JSTQE. 2017. 2690838
  6. Жуков А. Е. Лазеры и микролазеры на основе квантовых точек. СПб. : Политех-Пресс, 2019. 42 с.
  7. Yuval Y., Matthew A. Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas // Applied Physics Letters. 2017. Vol. 110, № 4. P. 041106/1– 041106/4. http://dx.doi.org/10.1063/1.4975058
  8. Xin T., Guang fu W. Plasmon resonance enhanced colloidal HgSe quantum dot fi lterless narrowband photodetectors for mid-wave infrared // J. Materials Chemistry C: Materials for Optical and Electronic Devices. 2017. Vol. 5, № 2. P. 362–369. https://doi.org/10.1039/ c6tc04248a
  9. Chu A., Greboval Ch., Goubet N. Near Unity Absorption in Nanocrystal Based Short Wave Infrared Photodetectors Using Guided Mode Resonators // ACS Photonics. 2019. Vol. 6, № 10. P. 2553–2561. https:// doi.org/10.1021/acsphotonics.9b01015
  10. Жуков Н. Д., Смирнова Т. Д., Хазанов A. А., Цветкова О. Ю., Штыков С. Н. Свойства полупроводниковых коллоидных квантовых точек, полученных в условиях управляемого синтеза // Физика и техника полупроводников 2021. Т. 55, № 12. С. 1203–1209. https://doi.org/10.21883/FTP.2021.12.51706.9704
  11. Жуков Н. Д., Гавриков М. В., Кабанов В. Ф., Ягудин И. Т. Одноэлектронный эмиссионно-инжекционный транспорт в микроструктуре с коллоидными квантовыми точками узкозонных полупроводников // Физика и техника полупроводников. 2021. Т. 55, № 4. С. 319–325. http://dx.doi.org/10.21883/ FTP.2021.04.50732.9552
  12. Martinez B., Livache C., Notemgnou L. D. M. Envi ronmentally Friendly Plasma-Treated PEDOT: PSS as Electrodes for ITO-Free Perovskite Solar Cells // ACS Appl. Mater. Interfaces. 2017. Vol. 9, № 41. P. 36173–3683. https://doi.org/10.1021/acsami.7b10987
  13. Kristl M., Drofenik M. Sonochemical synthesis of nanocrystalline mercury sulfi de, selenide and telluride in aqueous solutions // Ultrason. Sonochem. 2008. Vol. 15. P. 695–699. https://doi.org/10.1016/j.ultsonch.2008.02.007