Для цитирования:
Липатов Н. Н., Величко Н. С., Сигида Е. Н., Федоненко Ю. П. Разнообразие ризосферных бактерий-галофитов береговой полосы оз. Эльтон // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2025. Т. 25, вып. 4. С. 416-421. DOI: 10.18500/1816-9775-2025-25-4-416-421, EDN: RLRDMM
Разнообразие ризосферных бактерий-галофитов береговой полосы оз. Эльтон
Галофильные микроорганизмы привлекают внимание исследователей благодаря приобретенной в ходе адаптации к существованию в экстремальных условиях способности синтезировать биополимеры с уникальными свойствами, потенциально востребованными в биотехнологии. Бактерии, обитающие в ризосфере растений, произрастающих в почвах с повышенным уровнем минерализации, часто демонстрируют рост-стимулирующую активность. Целью исследования являлся анализ таксономического разнообразия бактерий ризосферы преобладающих галофитов береговой полосы соленого бессточного самосадочного озера Эльтон (Волгоградская область). Из образцов ризосферы растений семейства Chenopodiaceae были получены накопительные культуры микроорганизмов, с последующим выделением бактериальной ДНК, амплификацией и секвенированием нуклеотидных последовательностей вариабельных фрагментов V3-V4 гена 16S рибосомальной РНК. Анализ микробиома ризосферы Climacoptera lachnophylla (Iljin) Botsch., Salsola soda L., Anabasis salsa (C. A. Mey.) Benth. ex Volkens продемонстрировал большее видовое разнообразие по сравнению с микробиомами образцов почвы и соли береговой зоны озера. Отмечено доминирование филумов Proteobacteria и Firmicutes во всех анализируемых образцах при различном соотношении их представителей. Микробиота ризосферы исследуемых растений была представлена в основном известными видами семейств Halomonadaceae и Bacillaceae, которые по литературным данным довольно часто обладают способностью продуцировать такие регулирующие развитие растений метаболиты, как индолил-3-уксусную кислоту и сидерофоры.
- Egamberdieva D., Wirth S., Bellingrath-Kimura S. D., Mishra J., Arora N. K. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 2019, vol. 10, art. 2791. https://doi.org/10.3389/fmicb.2019.02791
- Stavi I., Thevs N., Priori S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 2021, vol. 9, art. 330. https://doi.org/10.3389/fenvs.2021.712831
- Ondrasek G., Rengel Z. Environmental salinization processes: Detection, implications and solutions. Science of The Total Environment, 2021, vol. 754, art. 142432. https://doi.org/10.1016/j.scitotenv.2020.142432
- Ondrasek G., Rathod S., Manohara K. K., Gireesh C., Anantha M. S., Sakhare A. S., Parmar B., Yadav B. K., Bandumula N., Raihan F. et al. Salt stress in plants and mitigation approaches. Plants, 2022, vol. 11, art. 717. https://doi.org/10.3390/plants11060717
- Santos T. B. dos, Ribas A. F., Souza S. G. H. de, Budzinski I. G. F., Domingues D. S. Physiological responses to drought, salinity, and heat stress in plants: A review. Stresses, 2022, vol. 2, pp. 113–135. https://doi.org/10.3390/stresses2010009
- Rossi M., Borromeo I., Capo C., Glick B. R., Del Gallo M., Pietrini F., Forni C. PGPB improve photosynthetic activity and tolerance to oxidative stress in Brassica napus grown on salinized soils. Applied Sciences, 2021, vol. 11, art. 11442. https://doi.org/10.3390/app112311442
- Saghafi D., Delangiz N., Lajayer B. A., Ghorbanpour M. An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. 3 Biotech, 2019, vol. 9, no. 7, art. 261. https://doi.org/10.1007/s13205-019-1799-0
- Etesami H., Beattie G. A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in Microbiology, 2018, vol. 9, art. 148. https://doi.org/10.3389/fmicb.2018.00148
- Meinzer M., Ahmad N., Nielsen B. L. Halophilic plant-associated bacteria with plant-growth-promoting potential. Microorganisms, 2023, vol. 11, no. 12, art. 2910. https://doi.org/10.3390/microorganisms11122910
- Kumar V., Raghuvanshi N., Pandey A. K., Kumar A., Thoday-Kennedy E., Kant S. Role of halotolerant plant growth-promoting rhizobacteria in mitigating salinity stress: Recent advances and possibilities. Agriculture, 2023, vol. 13, no. 1, art. 168. https://doi.org/10.3390/agriculture13010168
- Margesin R., Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles, 2001, vol. 5, no. 2, pp. 73–83. https://doi.org/10.1007/s007920100184
- Martínez G. M., Pire C., Martínez-Espinosa R. M. Hypersaline environments as natural sources of microbes with potential applications in biotechnology: The case of solar evaporation systems to produce salt in Alicante County (Spain). Current Research in Microbial Sciences, 2022, vol. 3, art. 100136. https://doi.org/10.1016/j.crmicr.2022.100136
- Biswas J., Jana S. K., Mandal S. Biotechnological impacts of Halomonas: A promising cell factory for industrially relevant biomolecules. Biotechnology and Genetic Engineering Reviews, 2023, vol. 39, no. 2, pp. 348–377. https://doi.org/10.1080/02648725.2022.2131961
- Oren A. Novel insights into the diversity of halophilic microorganisms and their functioning in hypersaline ecosystems. npj Biodiversity, 2024, vol. 3, art. 18. https://doi.org/10.1038/s44185-024-00050-w
- Sehgal S. N., Gibbons N. E. Effect of some metal ions on the growth of Halobacterium cutirubrum. Canadian Journal of Microbiology, 1960, vol. 6, pp. 156–169. https://doi.org/10.1139/m60-018
- Zinchenko T. D., Shitikov V. K., Golovatyuk L. V., Gusakov V. A., Lazareva V. I. Plankton and bottom communities in the saline rivers of Lake Elton basin: Statistical analysis of dependences. Arid Ecosystems, 2018, vol. 8, pp. 225–230. https://doi.org/10.1134/S2079096118030083
- Abellan-Schneyder I., Matchado M. S., Reitmeier S., Sommer A., Sewald Z., Baumbach J., List M., Neuhaus K. Primer, pipelines, parameters: Issues in 16S rRNA gene sequencing. Msphere, 2021, vol. 6, no. 1, art. e01202-20. https://doi.org/10.1128/mSphere.01202-20
- Wensel C. R., Pluznick J. L., Salzberg S. L., Sears C. L. Next-generation sequencing: Insights to advance clinical investigations of the microbiome. Journal of Clinical Investigation, 2022, vol. 132, no. 7, art. e154944. https://doi.org/10.1172/JCI154944
- Wang R., Cui L., Li J., Li W. Factors driving the halophyte rhizosphere bacterial communities in coastal salt marshes. Frontiers in Microbiology, 2023, vol. 14, art. 1127958. https://doi.org/10.3389/fmicb.2023.1127958
- Oliva G., Di Stasio L., Vigliotta G., Guarino F., Cicatelli A., Castiglione S. Exploring the potential of four novel halotolerant bacterial strains as plant-growth-promoting rhizobacteria (PGPR) under saline conditions. Applied Sciences, 2023, vol. 13, no. 7, art. 4320. https://doi.org/10.3390/app13074320
- Desale P., Patel B., Singh S., Malhotra A., Nawani N. Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in presence of salinity and heavy metals. Electronic Journal of Biotechnology, 2014, vol. 54, no. 8, pp. 781–791. https://doi.org/10.1002/jobm.201200778
- Etesami H., Glick B. R. Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environmental and Experimental Botany, 2020, vol. 178, art. 104124. https://doi.org/10.1016/j.envexpbot.2020.104124