Для цитирования:
Presnyakov K. Y., Pidenko P. S., Pidenko S. ., Biryukov I. R., Burmistrova N. A. Molecularly imprinted polyaniline: Synthesis, properties, application. A review [Пресняков К. Ю., Пиденко П. С., Пиденко С. А., Бирюков И. Р., Бурмистрова Н. А. Полианилин в молекулярном импринтинге: синтез, свойства, применение. Обзор] // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2022. Т. 22, вып. 2. С. 142-149. DOI: 10.18500/1816-9775-2022-22-2-142-149
Molecularly imprinted polyaniline: Synthesis, properties, application. A review
[Полианилин в молекулярном импринтинге: синтез, свойства, применение. Обзор]
Молекулярный импринтинг является быстро развивающимся и перспективным подходом селективного распознавания молекул-мишеней различной природы. В обзоре собраныработы, посвященные синтезу и применениюмолекулярно-импринтированных полимеров на основе полианилина (МИ-ПАНИ) за последние 5 лет. Приведено краткое описание основных подходов к синтезу МИПАНИ, а также рассмотрены их преимущества и недостатки. Обсуждено влияние различных факторов на процесс синтеза МИ-ПАНИ, в том числе метода полимеризации, молекулярной массы молекул темплата и типа подложки. Особое внимание уделено аналитическим характеристикам сенсоров на основе МИ-ПАНИ. Показано, что полианилин является перспективным материалом для синтеза МИП.
- Belbruno J. J. Molecularly Imprinted Polymers. Chem. Rev., 2019, vol. 119, no. 1, pp. 94–119. https://doi.org/10.1021/acs.chemrev.8b00171
- Ahmad O. S., Bedwell T. S., Esen C., Garcia-Cruz A., Piletsky S. A. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol., 2019, vol. 37, no. 3, pp. 294–309. https://doi.org/10.1016/j.tibtech.2018.08.009
- Dinc M., Esen C., Mizaikoff B. Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. TrAC – Trends Anal. Chem., 2019, vol. 114, pp. 202–217. https://doi.org/10.1016/j.trac.2019.03.008
- Nakatani N., Cabot J. M., Lam S. C., Rodriguez E. S., Paull B. Selective capillary electrophoresis separation of mono and divalent cations within a high-surface area-tovolume ratio multi-lumen capillary. Anal. Chim. Acta, 2019, vol. 1051, pp. 41–48. https://doi.org/10.1016/j. aca.2018.11.033
- Adumitrăchioaie A., Tertiş M., Cernat A., Săndulescu R., Cristea C. Electrochemical methods based on molecularly imprinted polymers for drug detection. A review. Int. J. Electrochem. Sci., 2018, vol. 13, no. 3, pp. 2556–2576. https://doi.org/10.20964/2018.03.75
- Mahmoudpour M., Torbati M., Mousavi M. M., de la Guardia M., Ezzati Nazhad Dolatabadi J. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. TrAC – Trends Anal. Chem., 2020, vol. 129. https://doi.org/10.1016/j.trac.2020.115943
- Jahanban-Esfahlan A., Roufegarinejad L., JahanbanEsfahlan R., Tabibiazar M., Amarowicz R. Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta, 2020, vol. 207. https://doi.org/10.1016/j.talanta.2019.120317
- Ansari S., Masoum S. Molecularly imprinted polymers for capturing and sensing proteins: Current progress and future implications. TrAC – Trends Anal. Chem., 2019, vol. 114, pp. 29–47. https://doi.org/10.1016/j.trac.2019.02.008
- Malik A. A., Nantasenamat C., Piacham T. Molecularly imprinted polymer for human viral pathogen detection. Mater. Sci. Eng. C, 2017, vol. 77, pp. 1341–1348. https:// doi.org/10.1016/j.msec.2017.03.209
- Piletsky S., Canfarotta F., Poma A., Bossi A. M., Piletsky S. Molecularly Imprinted Polymers for Cell Recognition. Trends Biotechnol., 2020, vol. 38, no. 4, pp. 368–387. https://doi.org/10.1016/j.tibtech.2019.10.002
- Iskierko Z., Sharma P. S., Bartold K., Pietrzyk-Le A., Noworyta K., Kutner W. Molecularly imprinted polymers for separating and sensing of macromolecular compounds and microorganisms. Biotechnol. Adv., 2016, vol. 34, no. 1, pp. 30–46. https://doi.org/10.1016/j.biotechadv.2015.12.002
- Crapnell R. D., Hudson A., Foster C. W., Eersels K., Grinsven B., Cleij T. J., Banks C. E., Peeters M. Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection. Sensors (Switzerland), 2019, vol. 19, no. 5. https://doi. org/10.3390/s19051204
- Schirhagl R. Bioapplications for molecularly imprinted polymers. Anal. Chem., 2014, vol. 86, no. 1, pp. 250–261. https://doi.org/10.1021/ac401251j
- Zouaoui F., Bourouina-Bacha S., Bourouina M., JaffrezicRenault N., Zine N., Errachi A. Electrochemical sensors based on molecularly imprinted chitosan: A review. TrAC – Trends Anal. Chem., 2020, vol. 130. https://doi.org/10.1016/j.trac.2020.115982
- Luo J., Sun J., Huang J., Liu X. Preparation of watercompatible molecular imprinted conductive polyaniline nanoparticles using polymeric micelle as nanoreactor for enhanced paracetamol detection. Chem. Eng. J., 2016, vol. 283, pp. 1118–1126. https://doi.org/10.1016/j.cej.2015.08.041
- Nezakati T., Seifalian A., Tan A., Seifalian A. M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev., 2018, vol. 118, no. 14, pp. 6766–6843. https://doi.org/10.1021/acs. chemrev.6b00275
- Lai J., Yi Y., Zhu P., Shen J. Polyaniline-based glucose biosensor: A review. J. Electroanal. Chem., 2016, vol. 782, pp. 138–153. https://doi.org/10.1016/j.jelechem.2016.10.033
- Włoch M., Datta J. Synthesis and polymerisation techniques of molecularly imprinted polymers. Compr. Anal. Chem., 2019, vol. 86, pp. 17–40. https://doi.org/10.1016/bs.coac.2019.05.011
- Ciric-Marjanovic G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met., 2013, vol. 177, no. 3, pp. 1–47. https://doi.org/10.1016/j.synthmet.2013.06.004
- Shoaie N., Daneshpour M., Azimzadeh M., Mahshid S., Khoshfetrat S.М., Jahanpeyma F., Gholaminejad A., Omidfar K., Foruzandeh M. Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: A review on recent advances. Microchim. Acta, 2019, vol. 186, no. 7. https://doi.org/10.1007/s00604-019-3588-1
- Karimi M., Rabiee M., Tahriri M., Salarian R., Tayebi L. A graphene based–biomimetic molecularly imprinted polyaniline sensor for ultrasensitive detection of human cardiac troponin T (cTnT). Synth. Met., 2019, vol. 256. https://doi.org/10.1016/j.synthmet.2019.116136
- Chen Z., Wright C., Dincel O., Chi T. Y., Kameoka J. A low-cost paper glucose sensor with molecularly imprinted polyaniline electrode. Sensors (Switzerland), 2020, vol. 20, no. 4, pp. 1–11. https://doi.org/10.3390/ s20041098
- Ayadi C., Anene A., Kalfat R., Chevalier Y., Hbaieb S. Molecularly imprinted polyaniline on silica scaffold for the selective adsorption of benzophenone-4 from aqueous media. Colloids Surfaces A Physicochem. Eng. Asp., 2019, vol. 567, pp. 32–42. https://doi.org/10.1016/j.colsurfa.2019.01.042
- Wang Q., Xue R., Guo H., Wei Y., Yang W. A facile horseradish peroxidase electrochemical biosensor with surface molecular imprinting based on polyaniline nanotubes. J. Electroanal. Chem., 2018, vol. 817, pp. 184–194. https://doi.org/10.1016/j.jelechem.2018.04.013
- Tian X., Zhang B., Hou J., Gu M., Chen Y. In Situ Preparation and Unique Electrical Behaviors of Gold@ Hollow Polyaniline Nanospheres through Recovery of Gold from Simulated e-Waste. Bull. Chem. Soc. Jpn., 2020, vol. 93, no. 3, pp. 373–378. https://doi.org/10.1246/bcsj.20190286
- Pidenko P. S., Pidenko S.A., Skibina Y. S., Zacharevich A. M., Drozd D. D., Goryacheva I. Yu., Burmistrova N. A. Molecularly imprinted polyaniline for detection of horseradish peroxidase. Anal. Bioanal. Chem., 2020, vol. 412, no. 24, pp. 6509–6517. https://doi.org/10.1007/ s00216-020-02689-3
- Cao F., Liao J., Yang K., Bai P., Wei Q., Zhao C. Self-assembly molecularly imprinted nanofi ber for 4-HA recognition. Anal. Lett., 2010, vol. 43, no. 17, pp. 2790–2797. https://doi.org/10.1080/00032711003731480
- Saxena S., Lakshmi G. B. V. S., Chauhan D., Solanki P. R. Molecularly Imprinted Polymer-based Novel Electrochemical Sensor for the Selective Detection of Aldicarb. Phys. Status Solidi Appl. Mater. Sci., 2020, vol. 217, no. 9, pp. 1–8. https://doi.org/10.1002/pssa.201900599
- Sun B., Wang C., Cai J., Li D., Li W., Gou X., Gou Y., Hu F. Molecularly Imprinted Polymer-Nanoporous Carbon Composite-Based Electrochemical Sensor for Selective Detection of Calycosin. J. Electrochem. Soc., 2019, vol. 166, no. 6. https://doi.org/10.1149/2.0971906jes
- Ponnaiah S. K., Periakaruppan P. A glassy carbon electrode modifi ed with a copper tungstate and polyaniline nanocomposite for voltammetric determination of quercetin. Microchim. Acta, 2018, vol. 185, no. 11. https://doi.org/10.1007/s00604-018-3071-4
- Regasa M. B., Soreta T. R., Femi O. E., Ramamurthy P. C., Kumar S. Molecularly imprinted polyaniline molecular receptor–based chemical sensor for the electrochemical determination of melamine. J. Mol. Recognit., 2020, vol. 33, no. 7, pp. 1–11. https://doi.org/10.1002/jmr.2836
- Chu T.-X., Vu V.-P., Tran H.-T., Tran T.-L., Tran Q.-T., Manh T. L. Molecularly Imprinted Polyaniline NanowireBased Electrochemical Biosensor for Chloramphenicol Detection: A Kinetic Study of Aniline Electropolymerization. J. Electrochem. Soc., 2020, vol. 167, no. 2. https://doi.org/10.1149/1945-7111/ab6a7e
- Vu V.-P., Tran Q.-T., Pham D.-T., Tran P.-D., Thierry B., Chu T.-X., Mai A.-T. Possible detection of antibiotic residue using molecularly imprinted polyaniline-based sensor. Vietnam J. Chem., 2019, vol. 57, no. 3, pp. 328–333. https://doi.org/10.1002/vjch.201900026
- Saksena K., Shrivastava A., Kant R. Chiral analysis of ascorbic acid in bovine serum using ultrathin molecular imprinted polyaniline/graphite electrode. J. Electroanal. Chem., 2017, vol. 795, pp. 103–109. https://doi.org/10.1016/j.jelechem.2017.04.043
- Essousi H., Barhoumi H. Electroanalytical application of molecular imprinted polyaniline matrix for dapsone determination in real pharmaceutical samples. J. Electroanal. Chem., 2018, vol. 818, pp. 131–139. https://doi.org/10.1016/j.jelechem.2018.04.039
- Luo J., Huang J., Wu Y., Sun J., Wei W., Liu X. Synthesis of hydrophilic and conductive molecularly imprinted polyaniline particles for the sensitive and selective protein detection. Biosens. Bioelectron., 2017, vol. 94, pp. 39–46. https://doi.org/10.1016/j.bios.2017.02.035
- Saadati F., Ghahramani F., Shayani-jam H., Piri F., Yaftian M. R. Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p-nitrophenol. J. Taiwan Inst. Chem. Eng., 2018, vol. 86, pp. 213–221. https://doi.org/10.1016/j. jtice.2018.02.019
- Rao H., Lu Z., Ge H., Liu X., Chen B., Zou P., Wang X., He H., Zeng X., Wang Y. Electrochemical creatinine sensor based on a glassy carbon electrode modifi ed with a molecularly imprinted polymer and a Ni@polyaniline nanocomposite. Microchim. Acta, 2017, vol. 184, no. 1, pp. 261–269. https://doi.org/10.1007/s00604-016-1998-x
- Li Y., Jiang C. Trypsin electrochemical sensing using two-dimensional molecularly imprinted polymers on 96- well microplates. Biosens. Bioelectron., 2018, vol. 119, pp. 18–24. https://doi.org/10.1016/j.bios.2018.07.067
- Boeva Z. A., Sergeyev V. G. Polyaniline: Synthesis, properties, and application. Polym. Sci. – Ser. C, 2014, vol. 56, no. 1, pp. 144–153. https://doi.org/10.1134/S1811238214010032
- Serrano V. M., Cardoso A. R., Diniz M., Sales M. G. F. In-situ production of Histamine-imprinted polymeric materials for electrochemical monitoring of fi sh. Sensors Actuators, B Chem., 2020, vol. 311. https://doi.org/10.1016/j.snb.2020.127902
- Phonklam K., Wannapob R., Sriwimol W., Thavarungkul P., Phairatana T. A novel molecularly imprinted polymer PMB/MWCNTs sensor for highly-sensitive cardiac troponin T detection. Sensors Actuators, B Chem., 2020, vol. 308. https://doi.org/10.1016/j.snb.2019.127630
- Jafari S., Dehghani M., Nasirizadeh N., Azimzadeh M. An azithromycin electrochemical sensor based on an aniline MIP fi lm electropolymerized on a gold nano urchins/graphene oxide modifi ed glassy carbon electrode. J. Electroanal. Chem., 2018, vol. 829, pp. 27–34. https:// doi.org/10.1016/j.jelechem.2018.09.053
- Dehghani M., Nasirizadeh N., Yazdanshenas M. E. Determination of cefi xime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/ electropolymerized molecular imprinted polymer. Mater. Sci. Eng. C, 2019, vol. 96, pp. 654–660. https://doi. org/10.1016/j.msec.2018.12.002
- Moreira F. T. C., Rodriguez B. A. G., Dutra R. A. F., Sales M. G. F. Redox probe-free readings of a Β-amyloid-42 plastic antibody sensory material assembled on copper@carbon nanotubes. Sensors Actuators, B Chem., 2018, vol. 264, pp. 1–9. https://doi.org/10.1016/j. snb.2018.02.166
- Mostafavi M., Yaftian M. R., Piri F., Shayani-Jam H. A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosens. Bioelectron., 2018, vol. 122, pp. 160–167. https://doi.org/10.1016/j.bios.2018.09.047
- Heinze J., Frontana-Uribe B. A., Ludwigs S. Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev., 2010, vol. 110, no. 8, pp. 4724–4771. https://doi.org/10.1021/cr900226k
- Trchová M., Stejskal J. Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical report). Pure Appl. Chem., 2011, vol. 83, no. 10, pp. 1803–1817. https://doi.org/10.1351/PAC-REP-10-02-01
- Erdem E., Karakişla M., Saçak M. The chemical synthesis of conductive polyaniline doped with dicarboxylic acids. Eur. Polym. J., 2004, vol. 40, no. 4, pp. 785–791. https:// doi.org/10.1016/j.eurpolymj.2003.12.007
- Sapurina I., Stejskal J. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym. Int., 2008, vol. 57, pp. 469–478. https://doi.org/10.1002/pi.2476
- Sapurina I. Y., Stejskal J. The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russ. Chem. Rev., 2011, vol. 79, no. 12, pp. 1123–1143. https://doi.org/10.1070/rc2010v079n12abeh004140
- Sen T., Mishra S., Shimpi N. G. Synthesis and sensing applications of polyaniline nanocomposites: A review. RSC Adv., 2016, vol. 6, no. 48. https://doi.org/10.1039/c6ra03049a
- Tahir Z. M., Alocilja E. C., Grooms D. L. Polyaniline synthesis and its biosensor application. Biosens. Bioelectron., 2005, vol. 20, no. 8, pp. 1690–1695. https://doi.org/10.1016/j.bios.2004.08.008
- Dhanjai Yu. N., Mugo S. M. A fl exible-imprinted capacitive sensor for rapid detection of adrenaline. Talanta, 2019, vol. 204, pp. 602–606. https://doi.org/10.1016/j. talanta.2019.06.016
- Kamel A. H., Amr A. E. G. E., Abdalla N. S., El-Naggar M., Al-Omar M. A., Alkahtani H. M., Sayed A. Y. A. Novel solid-state potentiometric sensors using Polyaniline (PANI) as a solid-contact transducer for fl ucarbazone herbicide assessment. Polymers (Basel), 2019, vol. 11, pp. 1–11. https://doi.org/10.3390/polym11111796
- Fatahi A., Malakooti R., Shahlaei M. Electrocatalytic oxidation and determination of dexamethasone at an Fe3O4/PANI-CuII microsphere modifi ed carbon ionic liquid electrode. RSC Adv., 2017, vol. 7, no. 19, pp. 11322–11330. https://doi.org/10.1039/c6ra26125f
- Li D., Wang N., Wang F., Zhao Q. Boronate affi nity-based surface-imprinted quantum dots as novel fl uorescent nanosensors for the rapid and effi cient detection of rutin. Anal. Methods, 2019, vol. 11, no. 25, pp. 3212–3220. https://doi.org/10.1039/c9ay00787c
- Orachorn N., Bunkoed O. A nanocomposite fl uorescent probe of polyaniline, graphene oxide and quantum dots incorporated into highly selective polymer for lomefl oxacin detection. Talanta, 2019, vol. 203, pp. 261–268. https://doi.org/10.1016/j.talanta.2019.05.082