Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Presnyakov K. Y., Pidenko P. S., Pidenko S. ., Biryukov I. R., Burmistrova N. A. Molecularly imprinted polyaniline: Synthesis, properties, application. A review. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 2, pp. 142-149. DOI: 10.18500/1816-9775-2022-22-2-142-149

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 157)
Полный текст в формате PDF(En):
(downloads: 74)
Language: 
English
Heading: 
Article type: 
Review
UDC: 
543.05+543.065

Molecularly imprinted polyaniline: Synthesis, properties, application. A review

Autors: 
Presnyakov Kirill Y. , Saratov State University
Pidenko Pavel S., Saratov State University
Pidenko Sergey A., Saratov State University
Biryukov Ilnur R. , Saratov State University
Burmistrova Natalia Anatolievna, Saratov State University
Abstract: 

Molecular imprinting is a rapidly developing and promising approach for the selective recognition for target molecules of diff erent nature. In this review, we have collected works devoted to synthesis and application of polyaniline-based molecularly imprinted polymers (MIPANI) over the last 5 years. The manuscript provides brief descriptions of the main approaches to the synthesis of PANI MIPs and the advantages and disadvantages of each technique. We also discuss the eff ect of various factors on the process of MI-PANI synthesis, including polymerization methods, molecular weight of template molecules and the types of scaff olds. The analytical characteristics of the resulting sensors are also provided. Thus, it can be concluded that polyaniline is a very promising material for MIPs synthesis.

Reference: 
  1. 1. Belbruno J. J. Molecularly Imprinted Polymers. Chem. Rev., 2019, vol. 119, no. 1, pp. 94–119. https://doi. org/10.1021/acs.chemrev.8b00171
  2. 2. Ahmad O. S., Bedwell T. S., Esen C., Garcia-Cruz A., Piletsky S. A. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol., 2019, vol. 37, no. 3, pp. 294–309. https://doi.org/10.1016/j.tibtech.2018.08.009
  3. 3. Dinc M., Esen C., Mizaikoff B. Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. TrAC – Trends Anal. Chem., 2019, vol. 114, pp. 202–217. https://doi.org/10.1016/j. trac.2019.03.008
  4. 4. Nakatani N., Cabot J. M., Lam S. C., Rodriguez E. S., Paull B. Selective capillary electrophoresis separation of mono and divalent cations within a high-surface area-tovolume ratio multi-lumen capillary. Anal. Chim. Acta, 2019, vol. 1051, pp. 41–48. https://doi.org/10.1016/j. aca.2018.11.033
  5. 5. Adumitrăchioaie A., Tertiş M., Cernat A., Săndulescu R., Cristea C. Electrochemical methods based on molecularly imprinted polymers for drug detection. A review. Int. J. Electrochem. Sci., 2018, vol. 13, no. 3, pp. 2556–2576. https://doi.org/10.20964/2018.03.75
  6. 6. Mahmoudpour M., Torbati M., Mousavi M. M., de la Guardia M., Ezzati Nazhad Dolatabadi J. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. TrAC – Trends Anal. Chem., 2020, vol. 129. https://doi.org/10.1016/j. trac.2020.115943
  7. 7. Jahanban-Esfahlan A., Roufegarinejad L., JahanbanEsfahlan R., Tabibiazar M., Amarowicz R. Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta, 2020, vol. 207. https://doi.org/10.1016/j.talanta.2019.120317
  8. 8. Ansari S., Masoum S. Molecularly imprinted polymers for capturing and sensing proteins: Current progress and future implications. TrAC – Trends Anal. Chem., 2019, vol. 114, pp. 29–47. https://doi.org/10.1016/j.trac.2019.02.008
  9. 9. Malik A. A., Nantasenamat C., Piacham T. Molecularly imprinted polymer for human viral pathogen detection. Mater. Sci. Eng. C, 2017, vol. 77, pp. 1341–1348. https:// doi.org/10.1016/j.msec.2017.03.209
  10. 10. Piletsky S., Canfarotta F., Poma A., Bossi A. M., Piletsky S. Molecularly Imprinted Polymers for Cell Recognition. Trends Biotechnol., 2020, vol. 38, no. 4, pp. 368–387. https://doi.org/10.1016/j.tibtech.2019.10.002
  11. 11. Iskierko Z., Sharma P. S., Bartold K., Pietrzyk-Le A., Noworyta K., Kutner W. Molecularly imprinted polymers for separating and sensing of macromolecular compounds and microorganisms. Biotechnol. Adv., 2016, vol. 34, no. 1, pp. 30–46. https://doi.org/10.1016/j.biotechadv.2015.12.002
  12. 12. Crapnell R. D., Hudson A., Foster C. W., Eersels K., Grinsven B., Cleij T. J., Banks C. E., Peeters M. Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection. Sensors (Switzerland), 2019, vol. 19, no. 5. https://doi. org/10.3390/s19051204
  13. 13. Schirhagl R. Bioapplications for molecularly imprinted polymers. Anal. Chem., 2014, vol. 86, no. 1, pp. 250–261. https://doi.org/10.1021/ac401251j
  14. 14. Zouaoui F., Bourouina-Bacha S., Bourouina M., JaffrezicRenault N., Zine N., Errachi A. Electrochemical sensors based on molecularly imprinted chitosan: A review. TrAC – Trends Anal. Chem., 2020, vol. 130. https://doi. org/10.1016/j.trac.2020.115982
  15. 5. Luo J., Sun J., Huang J., Liu X. Preparation of watercompatible molecular imprinted conductive polyaniline nanoparticles using polymeric micelle as nanoreactor for enhanced paracetamol detection. Chem. Eng. J., 2016, vol. 283, pp. 1118–1126. https://doi.org/10.1016/j. cej.2015.08.041
  16. 16. Nezakati T., Seifalian A., Tan A., Seifalian A. M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev., 2018, vol. 118, no. 14, pp. 6766–6843. https://doi.org/10.1021/acs. chemrev.6b00275
  17. 17. Lai J., Yi Y., Zhu P., Shen J. Polyaniline-based glucose biosensor: A review. J. Electroanal. Chem., 2016, vol. 782, pp. 138–153. https://doi.org/10.1016/j.jelechem.2016.10.033
  18. 18. Włoch M., Datta J. Synthesis and polymerisation techniques of molecularly imprinted polymers. Compr. Anal. Chem., 2019, vol. 86, pp. 17–40. https://doi.org/10.1016/ bs.coac.2019.05.011
  19. 19. Ciric-Marjanovic G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met., 2013, vol. 177, no. 3, pp. 1–47. https://doi.org/10.1016/j. synthmet.2013.06.004
  20. 20. Shoaie N., Daneshpour M., Azimzadeh M., Mahshid S., Khoshfetrat S.М., Jahanpeyma F., Gholaminejad A., Omidfar K., Foruzandeh M. Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: A review on recent advances. Microchim. Acta, 2019, vol. 186, no. 7. https://doi.org/10.1007/s00604-019-3588-1
  21. 21. Karimi M., Rabiee M., Tahriri M., Salarian R., Tayebi L. A graphene based–biomimetic molecularly imprinted polyaniline sensor for ultrasensitive detection of human cardiac troponin T (cTnT). Synth. Met., 2019, vol. 256. https://doi.org/10.1016/j.synthmet.2019.116136
  22. 22. Chen Z., Wright C., Dincel O., Chi T. Y., Kameoka J. A low-cost paper glucose sensor with molecularly imprinted polyaniline electrode. Sensors (Switzerland), 2020, vol. 20, no. 4, pp. 1–11. https://doi.org/10.3390/ s20041098
  23. 23. Ayadi C., Anene A., Kalfat R., Chevalier Y., Hbaieb S. Molecularly imprinted polyaniline on silica scaffold for the selective adsorption of benzophenone-4 from aqueous media. Colloids Surfaces A Physicochem. Eng. Asp., 2019, vol. 567, pp. 32–42. https://doi.org/10.1016/j. colsurfa.2019.01.042
  24. 24. Wang Q., Xue R., Guo H., Wei Y., Yang W. A facile horseradish peroxidase electrochemical biosensor with surface molecular imprinting based on polyaniline nanotubes. J. Electroanal. Chem., 2018, vol. 817, pp. 184–194. https://doi.org/10.1016/j.jelechem.2018.04.013
  25. 25. Tian X., Zhang B., Hou J., Gu M., Chen Y. In Situ Preparation and Unique Electrical Behaviors of Gold@ Hollow Polyaniline Nanospheres through Recovery of Gold from Simulated e-Waste. Bull. Chem. Soc. Jpn., 2020, vol. 93, no. 3, pp. 373–378. https://doi.org/10.1246/ bcsj.20190286
  26. 26. Pidenko P. S., Pidenko S.A., Skibina Y. S., Zacharevich A. M., Drozd D. D., Goryacheva I. Yu., Burmistrova N. A. Molecularly imprinted polyaniline for detection of horseradish peroxidase. Anal. Bioanal. Chem., 2020, vol. 412, no. 24, pp. 6509–6517. https://doi.org/10.1007/ s00216-020-02689-3
  27. 27. Cao F., Liao J., Yang K., Bai P., Wei Q., Zhao C. Self-assembly molecularly imprinted nanofi ber for 4-HA recognition. Anal. Lett., 2010, vol. 43, no. 17, pp. 2790–2797. https://doi.org/10.1080/00032711003731480
  28. 28. Saxena S., Lakshmi G. B. V. S., Chauhan D., Solanki P. R. Molecularly Imprinted Polymer-based Novel Electrochemical Sensor for the Selective Detection of Aldicarb. Phys. Status Solidi Appl. Mater. Sci., 2020, vol. 217, no. 9, pp. 1–8. https://doi.org/10.1002/pssa.201900599
  29. 29. Sun B., Wang C., Cai J., Li D., Li W., Gou X., Gou Y., Hu F. Molecularly Imprinted Polymer-Nanoporous Carbon Composite-Based Electrochemical Sensor for Selective Detection of Calycosin. J. Electrochem. Soc., 2019, vol. 166, no. 6. https://doi.org/10.1149/2.0971906jes
  30. 30. Ponnaiah S. K., Periakaruppan P. A glassy carbon electrode modifi ed with a copper tungstate and polyaniline nanocomposite for voltammetric determination of quercetin. Microchim. Acta, 2018, vol. 185, no. 11. https://doi.org/10.1007/s00604-018-3071-4
  31. 31. Regasa M. B., Soreta T. R., Femi O. E., Ramamurthy P. C., Kumar S. Molecularly imprinted polyaniline molecular receptor–based chemical sensor for the electrochemical determination of melamine. J. Mol. Recognit., 2020, vol. 33, no. 7, pp. 1–11. https://doi.org/10.1002/jmr.2836
  32. 32. Chu T.-X., Vu V.-P., Tran H.-T., Tran T.-L., Tran Q.-T., Manh T. L. Molecularly Imprinted Polyaniline NanowireBased Electrochemical Biosensor for Chloramphenicol Detection: A Kinetic Study of Aniline Electropolymerization. J. Electrochem. Soc., 2020, vol. 167, no. 2. https:// doi.org/10.1149/1945-7111/ab6a7e
  33. 33. Vu V.-P., Tran Q.-T., Pham D.-T., Tran P.-D., Thierry B., Chu T.-X., Mai A.-T. Possible detection of antibiotic residue using molecularly imprinted polyaniline-based sensor. Vietnam J. Chem., 2019, vol. 57, no. 3, pp. 328–333. https://doi.org/10.1002/vjch.201900026
  34. 34. Saksena K., Shrivastava A., Kant R. Chiral analysis of ascorbic acid in bovine serum using ultrathin molecular imprinted polyaniline/graphite electrode. J. Electroanal. Chem., 2017, vol. 795, pp. 103–109. https://doi. org/10.1016/j.jelechem.2017.04.043
  35. 35. Essousi H., Barhoumi H. Electroanalytical application of molecular imprinted polyaniline matrix for dapsone determination in real pharmaceutical samples. J. Electroanal. Chem., 2018, vol. 818, pp. 131–139. https://doi.org/10.1016/j.jelechem.2018.04.039
  36. 36. Luo J., Huang J., Wu Y., Sun J., Wei W., Liu X. Synthesis of hydrophilic and conductive molecularly imprinted polyaniline particles for the sensitive and selective protein detection. Biosens. Bioelectron., 2017, vol. 94, pp. 39–46. https://doi.org/10.1016/j.bios.2017.02.035
  37. 37. Saadati F., Ghahramani F., Shayani-jam H., Piri F., Yaftian M. R. Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p-nitrophenol. J. Taiwan Inst. Chem. Eng., 2018, vol. 86, pp. 213–221. https://doi.org/10.1016/j. jtice.2018.02.019
  38. 38. Rao H., Lu Z., Ge H., Liu X., Chen B., Zou P., Wang X., He H., Zeng X., Wang Y. Electrochemical creatinine sensor based on a glassy carbon electrode modifi ed with a molecularly imprinted polymer and a Ni@polyaniline nanocomposite. Microchim. Acta, 2017, vol. 184, no. 1, pp. 261–269. https://doi.org/10.1007/s00604-016-1998-x
  39. 39. Li Y., Jiang C. Trypsin electrochemical sensing using two-dimensional molecularly imprinted polymers on 96- well microplates. Biosens. Bioelectron., 2018, vol. 119, pp. 18–24. https://doi.org/10.1016/j.bios.2018.07.067
  40. 40. Boeva Z. A., Sergeyev V. G. Polyaniline: Synthesis, properties, and application. Polym. Sci. – Ser. C, 2014, vol. 56, no. 1, pp. 144–153. https://doi.org/10.1134/ S1811238214010032
  41. 41. Serrano V. M., Cardoso A. R., Diniz M., Sales M. G. F. In-situ production of Histamine-imprinted polymeric materials for electrochemical monitoring of fi sh. Sensors Actuators, B Chem., 2020, vol. 311. https://doi. org/10.1016/j.snb.2020.127902
  42. 42. Phonklam K., Wannapob R., Sriwimol W., Thavarungkul P., Phairatana T. A novel molecularly imprinted polymer PMB/MWCNTs sensor for highly-sensitive cardiac troponin T detection. Sensors Actuators, B Chem., 2020, vol. 308. https://doi.org/10.1016/j.snb.2019.127630
  43. 43. Jafari S., Dehghani M., Nasirizadeh N., Azimzadeh M. An azithromycin electrochemical sensor based on an aniline MIP fi lm electropolymerized on a gold nano urchins/graphene oxide modifi ed glassy carbon electrode. J. Electroanal. Chem., 2018, vol. 829, pp. 27–34. https:// doi.org/10.1016/j.jelechem.2018.09.053
  44. 44. Dehghani M., Nasirizadeh N., Yazdanshenas M. E. Determination of cefi xime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/ electropolymerized molecular imprinted polymer. Mater. Sci. Eng. C, 2019, vol. 96, pp. 654–660. https://doi. org/10.1016/j.msec.2018.12.002
  45. 45. Moreira F. T. C., Rodriguez B. A. G., Dutra R. A. F., Sales M. G. F. Redox probe-free readings of a Β-amyloid-42 plastic antibody sensory material assembled on copper@carbon nanotubes. Sensors Actuators, B Chem., 2018, vol. 264, pp. 1–9. https://doi.org/10.1016/j. snb.2018.02.166
  46. 46. Mostafavi M., Yaftian M. R., Piri F., Shayani-Jam H. A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosens. Bioelectron., 2018, vol. 122, pp. 160–167. https://doi.org/10.1016/j.bios.2018.09.047
  47. 47. Heinze J., Frontana-Uribe B. A., Ludwigs S. Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev., 2010, vol. 110, no. 8, pp. 4724–4771. https://doi.org/10.1021/cr900226k
  48. 48. Trchová M., Stejskal J. Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical report). Pure Appl. Chem., 2011, vol. 83, no. 10, pp. 1803–1817. https://doi.org/10.1351/PAC-REP-10-02-01
  49. 49. Erdem E., Karakişla M., Saçak M. The chemical synthesis of conductive polyaniline doped with dicarboxylic acids. Eur. Polym. J., 2004, vol. 40, no. 4, pp. 785–791. https:// doi.org/10.1016/j.eurpolymj.2003.12.007
  50. 50. Sapurina I., Stejskal J. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym. Int., 2008, vol. 57, pp. 469–478. https://doi.org/10.1002/pi.2476
  51. 51. Sapurina I. Y., Stejskal J. The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russ. Chem. Rev., 2011, vol. 79, no. 12, pp. 1123–1143. https://doi.org/10.1070/rc2010v079n12abeh004140
  52. 52. Sen T., Mishra S., Shimpi N. G. Synthesis and sensing applications of polyaniline nanocomposites: A review. RSC Adv., 2016, vol. 6, no. 48. https://doi.org/10.1039/ c6ra03049a
  53. 53. Tahir Z. M., Alocilja E. C., Grooms D. L. Polyaniline synthesis and its biosensor application. Biosens. Bioelectron., 2005, vol. 20, no. 8, pp. 1690–1695. https://doi.org/10.1016/j.bios.2004.08.008
  54. 54. Dhanjai Yu. N., Mugo S. M. A fl exible-imprinted capacitive sensor for rapid detection of adrenaline. Talanta, 2019, vol. 204, pp. 602–606. https://doi.org/10.1016/j. talanta.2019.06.016
  55. 55. Kamel A. H., Amr A. E. G. E., Abdalla N. S., El-Naggar M., Al-Omar M. A., Alkahtani H. M., Sayed A. Y. A. Novel solid-state potentiometric sensors using Polyaniline (PANI) as a solid-contact transducer for fl ucarbazone herbicide assessment. Polymers (Basel), 2019, vol. 11, pp. 1–11. https://doi.org/10.3390/polym11111796
  56. 56. Fatahi A., Malakooti R., Shahlaei M. Electrocatalytic oxidation and determination of dexamethasone at an Fe3O4/PANI-CuII microsphere modifi ed carbon ionic liquid electrode. RSC Adv., 2017, vol. 7, no. 19, pp. 11322–11330. https://doi.org/10.1039/c6ra26125f
  57. 57. Li D., Wang N., Wang F., Zhao Q. Boronate affi nity-based surface-imprinted quantum dots as novel fl uorescent nanosensors for the rapid and effi cient detection of rutin. Anal. Methods, 2019, vol. 11, no. 25, pp. 3212–3220. https://doi.org/10.1039/c9ay00787c
  58. 58. Orachorn N., Bunkoed O. A nanocomposite fl uorescent probe of polyaniline, graphene oxide and quantum dots incorporated into highly selective polymer for lomefl oxacin detection. Talanta, 2019, vol. 203, pp. 261–268. https://doi.org/10.1016/j.talanta.2019.05.082
Received: 
19.11.2021
Accepted: 
30.12.2021
Published: 
30.06.2021
Short text (in English):
(downloads: 46)