Для цитирования:
Басалаева Д. Л., Роденко К. А., Никельшпарг М. И., Евстигнеева С. С., Голубев Д. М., Глинская Е. В. Оценка способности бактерий Bacillus velezensis к продукции циклических липопептидов и характеристика их ростстимулирующих и биоремедиационных свойств // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2025. Т. 25, вып. 2. С. 184-194. DOI: 10.18500/1816-9775-2025-25-2-184-194, EDN: NBNQIP
Оценка способности бактерий Bacillus velezensis к продукции циклических липопептидов и характеристика их ростстимулирующих и биоремедиационных свойств
В последние годы сельское хозяйство столкнулось с проблемой поиска перспективных препаратов, эффективных в борьбе с болезнями растений, альтернативных синтетическим пестицидам, которые могут оказывать негативное воздействие как на живые организмы, так и на окружающую среду в целом. Для решения этой проблемы изучается возможность использования биологических методов защиты сельскохозяйственных культур. В частности, особое внимание уделяется поиску новых штаммов бактерий – естественных антагонистов патогенных микроорганизмов, которые можно было бы использовать вместо синтетических химикатов. Целью настоящего исследования являлась оценка способности бактерий Bacillus velezensis HR13 к продукции вторичных метаболитов, обладающих антагонистическими и ростстимулирующими свойствами. Проведена характеристика циклических липопептидов, выявленных в культуральной жидкости бактерий, методом времяпролетной масс-спектрометрии с матрично-активированной лазерной десорбцией/ионизацией (MALDI-ToF MS). Показано положительное влияние бактерий B. velezensis HR13 на морфометрические показатели проростков растений при инокуляции исследуемым штаммом в концентрации 106 –107 м. к./мл. Определена способность бактерий B. velezensis HR13 к использованию в качестве единственного источника углерода представителей такихгрупп действующих веществ синтетических фунгицидов, как триазолы и фенилпирролы в различных концентрациях.
- Breuer U. Book review: Brock mikrobiologie. By M. T. Madigan, J. M. Martinko, J. Parker (founded by T. D. Brock) // Acta Biotechnologica. 2001. № 4 (21). P. 369–370. https://doi.org/10.1002/1521-3846(200111)21:43.3CO;2-Z
- Schneider T., Müller A., Miess H., Gross H. Cyclic lipopeptides as antibacterial agents – potent antibiotic activity mediated by intriguing mode of actions // International Journal of Medical Microbiology. 2014. № 304, part 1. P. 37–43. https://doi.org/10.1016/j.ijmm.2013.08.009
- Ruis-Garsia C., Be'jar V. Bacillus velezensis sp. Nov., a surfactant-produsing bacterium isolated from the river Velez in Malaga, Southern Spain // International Journal of Systematic and Evolutionary Microbiology. 2005. № 55. part 1. P. 191–195. https://doi.org/10.1099/ijs.0.63310-0
- Pat. US-2018020676-A1 USA. 2014. Bacillus velezensis rti301 compositions and methods of use for benefiting plant growth and treating plant disease / S. Taghavi, D. van der Lelie, J. Lee, A. Devine. Priority December 29, 2014.
- Лазарев С. А., Михайлова Н. А. Ферментативные свойства пробиотических штаммов бактерий рода Bacillus // Актуальная биотехнология. 2019. № 3 (30). С. 404–406.
- Иркитова А. Н., Каган Я. Р., Соколова Г. Г. Сравнительный анализ методов определения антагонистической активности молочнокислых бактерий // Известия Алтайского государственного универститета. 2012. № 3, часть 1 (75). С. 41–44.
- Chen L., Chong X. Y., Zhang Y. Y., Lv Y. Y., Hu Y. S. Genome shuffling of Bacillus velezensis for enhanced surfactin production and variation analysis // Curr. Microbiol. 2020. № 77, part 1. P. 71–78. https://doi.org/10.1007/s00284-019-01807-4
- Басалаева Д. Л., Никельшпарг М. И., Евстигнеева С. С., Глинская Е. В. Антагонистическая активность бактерий Bacillus velezensis // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2022. Т. 22, вып. 1. С. 57–63. https://doi.org/10.18500/1816-9775-2022-22-1-57-63
- Мелентьев А. И., Курченко В. П., Кузьмина Л. Ю. Циклические липопептиды – перспективный биотехнологический продукт // Перспективы и проблемы развития биотехнологии в рамках единого экономического пространства стран Содружества : материалы междунар. науч-практ. конф. (Минск-Нарочь, 25–28 мая 2005 г.). Минск : РИВШ, 2005. С. 140–141.
- Смирнова Ю. В., Гамоненко О. В. Влияние Bacillus subtilis на рост горчицы сарепской // Проблемы и перспективы изучения естественных и антропогенных источников экосистем Урала и прилегающих районов : материалы IX Всерос. науч-практ. конф. (Стерлитамак, 25 мая 2019 г.). Стерлитамак : Издательство Башкирского государственного университета, 2019. С. 121–124.
- Яковлева О. В. Аэробные спорообразующие бактерии рода Bacillus Cohn – продуценты поверхностно-активных веществ : дис. … канд. биол. наук. Уфа, 2004. 117 с.
- Hathout Y., Ho Y. P., Ryzhov V., Demirev P., Fenselau C. Kurstakins: A new class of Lipopeptides isolated from Bacillus thuringiensis // Journal of Natural Products. 2000. № 63. P. 1492–1496. https://doi.org/10.1021/np000169q
- Li X., Zhang Y., Wei Z., Guan Z., Cai Y., Liao X. Antifungal activity of isolated Bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis // PloS ONE. 2016. № 11. P. 1–22. https://doi.org/10.1371/journal.pone.0162125
- Zhi Y., Wu Q., Xu Y. Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45 // Scientific Reports. 2017. № 7. P. 1–13. https://doi.org/10.1038/srep40976
- de Faria A. F., Stéfani D., Vaz B. G., Silva Í. S., Garcia J. S., Eberlin M. N., Grossman M. J., Alves O. L., Durrant L. R. Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol // Journal of Industrial Microbiology and Biotechnology. 2011. № 38. P. 863–871. https://doi.org/10.1007/s10295-011-0980-1
- Dimkić I.,Stanković S., Nišavić M., Petković M., Ristivojević P., Fira D., Berić T. The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains // Frontiers in Microbiology. 2017. № 8. P. 925–936. https://doi.org/10.3389/fmicb.2017.00925
- Lu K., Jin Q., Lin Y., Lu W., Li S., Zhou C., Jin J., Jiang Q., Ling L., Xiao M. Cell-free fermentation broth of Bacillus velezensis strain S3-1 improves Pak Choi nutritional quality and changes the bacterial community structure of the rhizosphere soil // Frontiers in Microbiology. 2020. № 11. P. 2043–2056. https://doi.org/10.3389/fmicb.2020.02043
- Wang C., Zhao D., Qi G., Mao Z., Hu X., Du B., Liu K., Ding Y. Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd. and inhibiting Fusarium verticillioides // Frontiers in Microbiology. 2020. № 10. P. 2889–2904. https://doi.org/10.3389/fmicb.2019.02889
- Hashem A., Tabassum B., Allah E. F. A. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress // Saudi Journal of Biological Sciences. 2019. Vol. 26. P. 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004
- Kumar A., Singh S., Mukherjee A.,Rastogi R. P., Verma J. P. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress // Microbiol. Res. 2021. Vol. 242. Art. 126616. https://doi.org/10.1016/j.micres.2020
- Kazerooni E. A., Maharachchikumbura S. S. N., Adhikari A., Al-Sadi A. M., Kang S. M., Kim L. R., Lee I. J. Rhizospheric Bacillus amyloliquefaciens protect Capsicum annuum cv. Geumsugangsan from multiple abiotic stress via multifarious plant growth-promoting attributes // Frontiers in Plant Science. 2021. Vol. 12. P. 669–693. https://doi.org/10.3389/fpls.2021.669693
- Syed Nabi R. B., Shahzad R., Tayade R., Shahid M., Hussain A., Ali M. W., Yun B. W. Evaluation potential of PGPR to protect tomato against Fusarium wilt and promote plant growth // Peer. J. 2021. Vol. 16. P. 1–20. https://doi.org/10.7717/peerj.11194
- Awan S. A., Ilyas N., Khan I., Raza M. A., Rehman A. U., Rizwan M., Rastogi A., Tariq R., Brestic M. Bacillus siamensis reduces cadmium accumulation and improves growth and antioxidant defense system in two wheat (Triticum aestivum L.) varieties // Plants (Basel). 2020. Vol. 9. P. 878–891. https://doi.org/10.3390/plants9070878
- Roy T., Bandopadhyay A., Paul C., Majumdar S., Das N. Role of plasmid in pesticide degradation and metal tolerance in two plant growth–promoting rhizobacteria Bacillus cereus (NCIM 5557) and Bacillus safensis (NCIM 5558) // Current Microbiology. 2022. Vol. 79, № 4. P. 106–112. https://doi.org/10.1007/s00284-022-02793-w
- Podbielska M., Kus-Liśkiewicz M., Jagusztyn B., Piechowicz B., Sadło S., Słowik-Borowiec M., Twarużek M., Szpyrka E. Influence of Bacillus subtilis and Trichoderma harzianum on penthiopyrad degradation under laboratory and field studies // Molecules. 2020. Vol. 25, № 6. P. 1421–1436. https://doi.org/10.3390/molecules25061421
- Zhao J., Chi Y., Xu Y., Jia D., Yao K. Co-metabolic degradation of β-cypermetrim and 3-phenoxybenzoic acid by co–culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4 // PLoS ONE. 2016. Vol. 11, № 11. P. 1–14. https://doi.org/10.1371/journal.pone.0166796
- Chen S., Deng Y., Chang C., Lee J., Cheng Y., Cui Z., Zhou J., He F., Hu M., Zhang L. H. Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19 // Scientific Reports. 2015. Vol. 5. P. 84–87. https://doi.org/10.1038/srep08784
- Jakinala P., Lingampally N., Kyama A., Hameeda B. Enhancement of atrazine biodegradation by marine isolate Bacillus velezensis MHNK1 in presence of surfactin lipopeptide // Ecotoxicologe and Enviromental Safety. 2019. Vol. 182. P. 372–378. https://doi.org/10.1016/j.ecoenv.2019.109372