Для цитирования:
Тучина Е. С., Сурков Ю. И., Серебрякова И. А., Шарабарина Т. В., Генин В. Д., Мусаелян А. Г., Долотов Л. Е., Тучин В. В. Ex vivo модель использования метода оптического просветления кожи при антимикробном фотодинамическом воздействии // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2025. Т. 25, вып. 1. С. 76-88. DOI: 10.18500/1816-9775-2025-25-1-76-88, EDN: SYWLBU
Ex vivo модель использования метода оптического просветления кожи при антимикробном фотодинамическом воздействии
Оценивалась эффективность чрескожного фотодинамического воздействия с использованием синего (428 нм) светодиодного облучения на Staphylococcus aureus 11 в сочетании с водорастворимым катионным пиридилпорфирином и оптическими просветляющими агентами (OПA) в модели ex vivo. Результаты показали, что при прохождении излучения сквозь кожный лоскут наличие OПA значительно усиливает фотодинамическую инактивацию бактериальных клеток (на 61% после 15 мин воздействия света), что сопоставимо с прямым облучением. Анализ оптических параметров выявил снижение коэффициентов рассеяния и поглощения и увеличение глубины проникновения света (до 121,6%) в образцах кожи, обработанных OПA. Результаты подтверждают, что оптическое просветление повышает эффективность антимикробного фотодинамического воздействия за счет усиления проникновения света в более глубокие слои тканей, снижения потребности в высокой интенсивности лазера и минимизации повреждения поверхностных тканей. Этот подход является перспективным для лечения инфекций кожи, слизистых оболочек и мягких тканей у людей и животных, предлагая ценную информацию о взаимодействии света и тканей и оптимизируя фотодинамическую терапию, одновременно снижая риски, связанные с использованием светодиодов и лазеров.
- Mahmoudi H., Pourhajibagher M., Chiniforush N., Alikhani M. Y., Bahador A. Antimicrobial photodynamic therapy: Modern technology in the treatment of wound infections in patients with burns // J. Wound Care. 2023. Vol. 32. P. 31–38. https://doi.org/10.12968/jowc.2023.32.Sup4a.xxxi
- Hu X., Huang Y.-Y., Wang Y., Wang X., Hamblin M. R. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections // Frontiers in Microbiology. 2018. Vol. 9. P. 1–24. https://doi.org/10.3389/fmicb.2018.01299
- Feng Y., Tonon C. C., Ashraf S., Hasan T. Photodynamic and antibiotic therapy in combination against bacterial infections: Efficacy, determinants, mechanisms, and future perspectives // Adv. Drug Deliv. Rev. 2021. Vol. 177. EN 113941. https://doi.org/10.1016/j.addr.2021.113941
- Huang S., Lin S., Qin H., Jiang H., Liu M. The parameters affecting antimicrobial efficiency of antimicrobial blue light therapy: A review and prospect // Biomedicines. 2023. Vol. 11. Article number 1197. P. 1–13. https://doi.org/10.3390/biomedicines11041197
- Tuchin V. V., Genina E. A., Tuchina E. S., Svetlakova A. V., Svenskaya Y. I. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery // Advanced Drug Delivery Reviews. 2022. Vol. 180. EN 114037. P. 1–122. https://doi.org/10.1016/j.addr.2021.114037
- Larin K. V., Ghosn M. G., Bashkatov A. N., Genina E. A., Trunina N. A., Tuchin V. V. Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion // J. Sel. Top. Quantum Electron. 2012. Vol. 18, № 3. P. 1244–1259. https://doi.org/10.1109/JSTQE.2011.2181991
- Oliveira L., Tuchin V. V. The optical clearing method: A new tool for clinical practice and biomedical engineering. Basel : Springer Nature Switzerland AG, 2019. 177 p.
- Tuchin V. V., Zhu D., Genina E. A. Handbook of Tissue Optical Clearing. Boca Raton: CRC Press, 2022. 682 p. https://doi.org/10.1201/9781003025252
- Shariati B. K. B., Khatami S. S., Ansari M. A., Jahangiri F., Latifi H., Tuchin V. V. Method for tissue clearing: Temporal tissue optical clearing // Biomed. Opt. Exp. 2022. Vol. 13, № 8. P. 4222–4235. https://doi.org/10.1364/BOE.461115
- Costantini I., Cicchi R., Silvestri L., Vanzi F., Pavone F. S. In vivo and ex vivo optical clearing methods for biological tissues: Review // Biomed. Opt. Express. 2019. Vol. 10. P. 5251–5267. https://doi.org/10.1364/boe.10.005251
- Feng W., Shi R., Ma N., Tuchina D. K., Tuchin V. V., Zhu D. Skin optical clearing potential of disaccharides // J. Biomed. Opt. 2016. Vol. 21, № 8. EN 081207. https://doi.org/10.1117/1.JBO.21.8.081207
- Shi R., Guo L., Zhang C., Feng W., Li P., Ding Z., Zhu D. A useful way to develop effective in vivo skin optical clearing agents // J. Biophoton. 2017. Vol. 10. P. 887–895. https://doi.org/10.1002/jbio.201600221
- Liu Y., Zhu D., Xu J., Wang Y., Feng W., Chen D., Li Y., Liu H., Guo X., Qiu H., Gu Y. Penetration-enhanced optical coherence tomography angiography with optical clearing agent for clinical evaluation of human skin // Photodiagnosis Photodyn. Ther. 2020. Vol. 30. EN 101734. https://doi.org/10.1016/j.pdpdt.2020.101734
- Yu T., Zhong X., Li D., Zhu J., Tuchin V. V., Zhu D. Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo // Adv. Drug. Deliv. Rev. 2024. Vol. 215. EN 115470. https://doi.org/10.1016/j.addr.2024.115470
- Selifonov A. A., Tuchin V. V. Tissue optical clearing in the ultraviolet for clinical use in dentistry to optimize the treatment of chronic recurrent aphthous stomatitis // J. Biomed. Photonics. Eng. 2020. Vol. 6, № 4. EN 040301. https://doi.org/10.18287/jbpe20.06.040301
- Pires L., Demidov V., Wilson B. C., Salvio A. G., Moriyama L., Bagnato V. S., Vitkin I. A., Kurachi C. Dual-agent photodynamic therapy with optical clearing eradicates pigmented melanoma in preclinical tumor models // Cancers. 2020. Vol. 12, № 7. EN 1956. https://doi.org/10.3390/cancers12071956
- Martinelli L. P., Iermak I., Moriyama L. T., Requena M. B., Pires L., Kurachi C. Optical clearing agent increases effectiveness of photodynamic therapy in a mouse model of cutaneous melanoma: An analysis by Raman microspectroscopy // Biomed. Opt. Exp. 2020. Vol. 11, № 11. P. 6516–6527. https://doi.org/10.1364/BOE.405039
- Тучина Е. С., Корченова М. В., Закоян А. А., Тучин В. В. Влияние штаммовых различий на устойчивость Staphylococcus aureus к фотодинамическому воздействию с использованием мезо-замещенных катионных порфиринов // Известия Саратовского университета. Физика. 2024. Т. 24, вып. 3. С. 216–227. https://doi.org/10.18500/1817-3020-2024-24-3-216-227
- Tovmasyan A. G., Babayan N. S., Sahakyan L. A., Shahkhatuni A. G., Gasparyan G. H., Aroutiounian R. M., Ghazaryan R. K. Synthesis and in vitro anticancer activity of water-soluble cationic pyridylporphyrins and their metallocomplexes // J. of Porphyrins and Phthalocyanines. 2008. Vol. 12, iss. 10. P. 1100–1110. https://doi.org/10.1142/s1088424608000467
- Gyulkhandanyan G. V., Sargsyan A. A., Paronyan M. H., Sheyranyan M. A. Absorption and fluorescence spectra parameters of cationic porphyrins for photodynamic therapy of tumors // Biolog. Journal of Armenia. 2020. Vol. 3, iss. 72. P. 72–76.
- Bashkatov A. N., Genina E. A., Kozintseva M. D., Kochubei V. I., Gorodkov S. Yu., Tuchin V. V. Optical properties of peritoneal biological tissues in the spectral range of 350–2500 nm // Opt. Spectrosc. 2016. Vol. 120, № 1. P. 1–8.
- Khan R., Gul B., Khan S., Nisar H., Ahmad I. Refractive index of biological tissues: Review, measurement techniques, and applications // Photodiagnosis Photodyn. Ther. 2021. Vol. 33. EN 102192. https://doi.org/10.1016/j.pdpdt.2021.102192
- Lazareva E. N., Oliveira L., Yanina I. Yu., Chernomyrdin N. V., Musina G. R., Tuchina D. K., Bashkatov A. N., Zaytsev K. I., Tuchin V. V. Refractive index measurements of tissue and blood components and OCAs in a wide spectral range // Handbook of Tissue Optical Clearing. CRC Press, 2022. P. 141–166.
- Genina E. A. Tissue optical clearing: State of the art and prospects // Diagnostics. 2022. Vol. 12, № 7. EN 1534. https://doi.org/10.3390/diagnostics12071534
- Wang R. K. Modelling optical properties of soft tissue by fractal distribution of scatterers // Journal of Modern Optics. 2000. Vol. 47, № 1. P. 103–120.
- Bashkatov A. N., Genina E. A., Kochubey V. I., Tuchin V. V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm // Journal of Physics D: Applied Physics. 2005. Vol. 38, № 15. P. 25–43. https://doi.org/10.1088/0022-3727/38/15/004
- Zhao Z., Ma J., Wang Y., Xu Z., Zhao L., Zhao J., Hong G., Liu T. Antimicrobial photodynamic therapy combined with antibiotic in the treatment of rats with third-degree burns // Front. Microbiol. 2021. Vol. 12. EN 622410. https://doi.org/10.3389/fmicb.2021.622410
- Svenskaya Y. I., Verkhovskii R. A., Zaytsev S. M., Lademann J., Genina E. A. Current issues in optical monitoring of drug delivery via hair follicles // Adv. Drug. Deliv. Rev. 2025. Vol. 217. EN 115477. https://doi.org/10.1016/j.addr.2024.115477