Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Tuchina E. S., Surkov Y. I., Serebryakova I. A., Sharabarina T. V., Genin V. D., Musaelyan A. G., Dolotov L. E., Tuchin V. V. Ex vivo model of using the method of optical skin clearing during antimicrobial photodynamic action. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2025, vol. 25, iss. 1, pp. 76-88. DOI: 10.18500/1816-9775-2025-25-1-76-88, EDN: SYWLBU

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 19)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
577.344.3:57.033
EDN: 
SYWLBU

Ex vivo model of using the method of optical skin clearing during antimicrobial photodynamic action

Autors: 
Tuchina Elena S., Saratov State University
Surkov Yury I. , Saratov State University
Serebryakova Isabella A., Saratov State University
Sharabarina Tatiana V., Saratov State University
Genin Vadim D., Saratov State University
Musaelyan Ara G., Saratov State University
Dolotov Leonid E., Saratov State University
Tuchin Valeriy V., Saratov State University
Abstract: 

This study evaluated the effi cacy of transcutaneous photodynamic therapy using blue (428 nm) LED irradiation on Staphylococcus aureus 11 in combination with a water-soluble cationic pyridyl porphyrin and optical clearing agents (OCA) in an ex vivo model. Results showed that OCA signifi cantly enhanced photodynamic inactivation with a 61% reduction in bacterial cell counts after 15 minutes of light exposure, comparable to direct irradiation. Optical parameter analysis revealed a decrease in scattering and absorption coeffi cients and an increase in light penetration depth (up to 121,6%) in OCA-treated skin samples. The results confi rm that optical clearing improves the effi cacy of antimicrobial photodynamic action by enhancing light penetration into deeper tissue layers, reducing the need for high laser intensities, and minimizing superfi cial tissue damage. This approach holds promise for the treatment of skin, mucosal and soft tissue infections in humans and animals, off ering valuable insights into light-tissue interactions and optimizing photodynamic therapy while reducing the risks associated with the use of LEDs and lasers.

Reference: 
  1. Mahmoudi H., Pourhajibagher M., Chiniforush N., Alikhani M. Y., Bahador A. Antimicrobial photodynamic therapy: Modern technology in the treatment of wound infections in patients with burns // J. Wound Care. 2023. Vol. 32. P. 31–38. https://doi.org/10.12968/jowc.2023.32.Sup4a.xxxi  
  2. Hu X., Huang Y.-Y., Wang Y., Wang X., Hamblin M. R. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections // Frontiers in Microbiology. 2018. Vol. 9. P. 1–24. https://doi.org/10.3389/fmicb.2018.01299  
  3. Feng Y., Tonon C. C., Ashraf S., Hasan T. Photodynamic and antibiotic therapy in combination against bacterial infections: Efficacy, determinants, mechanisms, and future perspectives // Adv. Drug Deliv. Rev. 2021. Vol. 177. EN 113941. https://doi.org/10.1016/j.addr.2021.113941  
  4. Huang S., Lin S., Qin H., Jiang H., Liu M. The parameters affecting antimicrobial efficiency of antimicrobial blue light therapy: A review and prospect // Biomedicines. 2023. Vol. 11. Article number 1197. P. 1–13. https://doi.org/10.3390/biomedicines11041197  
  5. Tuchin V. V., Genina E. A., Tuchina E. S., Svetlakova A. V., Svenskaya Y. I. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery // Advanced Drug Delivery Reviews. 2022. Vol. 180. EN 114037. P. 1–122. https://doi.org/10.1016/j.addr.2021.114037  
  6. Larin K. V., Ghosn M. G., Bashkatov A. N., Genina E. A., Trunina N. A., Tuchin V. V. Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion // J. Sel. Top. Quantum Electron. 2012. Vol. 18, № 3. P. 1244–1259. https://doi.org/10.1109/JSTQE.2011.2181991  
  7. Oliveira L., Tuchin V. V. The optical clearing method: A new tool for clinical practice and biomedical engineering. Basel : Springer Nature Switzerland AG, 2019. 177 p.  
  8. Tuchin V. V., Zhu D., Genina E. A. Handbook of Tissue Optical Clearing. Boca Raton: CRC Press, 2022. 682 p. https://doi.org/10.1201/9781003025252  
  9. Shariati B. K. B., Khatami S. S., Ansari M. A., Jahangiri F., Latifi H., Tuchin V. V. Method for tissue clearing: Temporal tissue optical clearing // Biomed. Opt. Exp. 2022. Vol. 13, № 8. P. 4222–4235. https://doi.org/10.1364/BOE.461115  
  10. Costantini I., Cicchi R., Silvestri L., Vanzi F., Pavone F. S. In vivo and ex vivo optical clearing methods for biological tissues: Review // Biomed. Opt. Express. 2019. Vol. 10. P. 5251–5267. https://doi.org/10.1364/boe.10.005251  
  11. Feng W., Shi R., Ma N., Tuchina D. K., Tuchin V. V., Zhu D. Skin optical clearing potential of disaccharides // J. Biomed. Opt. 2016. Vol. 21, № 8. EN 081207. https://doi.org/10.1117/1.JBO.21.8.081207  
  12. Shi R., Guo L., Zhang C., Feng W., Li P., Ding Z., Zhu D. A useful way to develop effective in vivo skin optical clearing agents // J. Biophoton. 2017. Vol. 10. P. 887–895. https://doi.org/10.1002/jbio.201600221  
  13. Liu Y., Zhu D., Xu J., Wang Y., Feng W., Chen D., Li Y., Liu H., Guo X., Qiu H., Gu Y. Penetration-enhanced optical coherence tomography angiography with optical clearing agent for clinical evaluation of human skin // Photodiagnosis Photodyn. Ther. 2020. Vol. 30. EN 101734. https://doi.org/10.1016/j.pdpdt.2020.101734  
  14. Yu T., Zhong X., Li D., Zhu J., Tuchin V. V., Zhu D. Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo // Adv. Drug. Deliv. Rev. 2024. Vol. 215. EN 115470. https://doi.org/10.1016/j.addr.2024.115470  
  15. Selifonov A. A., Tuchin V. V. Tissue optical clearing in the ultraviolet for clinical use in dentistry to optimize the treatment of chronic recurrent aphthous stomatitis // J. Biomed. Photonics. Eng. 2020. Vol. 6, № 4. EN 040301. https://doi.org/10.18287/jbpe20.06.040301  
  16. Pires L., Demidov V., Wilson B. C., Salvio A. G., Moriyama L., Bagnato V. S., Vitkin I. A., Kurachi C. Dual-agent photodynamic therapy with optical clearing eradicates pigmented melanoma in preclinical tumor models // Cancers. 2020. Vol. 12, № 7. EN 1956. https://doi.org/10.3390/cancers12071956  
  17. Martinelli L. P., Iermak I., Moriyama L. T., Requena M. B., Pires L., Kurachi C. Optical clearing agent increases effectiveness of photodynamic therapy in a mouse model of cutaneous melanoma: An analysis by Raman microspectroscopy // Biomed. Opt. Exp. 2020. Vol. 11, № 11. P. 6516–6527. https://doi.org/10.1364/BOE.405039  
  18. Тучина Е. С., Корченова М. В., Закоян А. А., Тучин В. В. Влияние штаммовых различий на устойчивость Staphylococcus aureus к фотодинамическому воздействию с использованием мезо-замещенных катионных порфиринов // Известия Саратовского университета. Физика. 2024. Т. 24, вып. 3. С. 216–227. https://doi.org/10.18500/1817-3020-2024-24-3-216-227  
  19. Tovmasyan A. G., Babayan N. S., Sahakyan L. A., Shahkhatuni A. G., Gasparyan G. H., Aroutiounian R. M., Ghazaryan R. K. Synthesis and in vitro anticancer activity of water-soluble cationic pyridylporphyrins and their metallocomplexes // J. of Porphyrins and Phthalocyanines. 2008. Vol. 12, iss. 10. P. 1100–1110. https://doi.org/10.1142/s1088424608000467  
  20. Gyulkhandanyan G. V., Sargsyan A. A., Paronyan M. H., Sheyranyan M. A. Absorption and fluorescence spectra parameters of cationic porphyrins for photodynamic therapy of tumors // Biolog. Journal of Armenia. 2020. Vol. 3, iss. 72. P. 72–76.  
  21. Bashkatov A. N., Genina E. A., Kozintseva M. D., Kochubei V. I., Gorodkov S. Yu., Tuchin V. V. Optical properties of peritoneal biological tissues in the spectral range of 350–2500 nm // Opt. Spectrosc. 2016. Vol. 120, № 1. P. 1–8.  
  22. Khan R., Gul B., Khan S., Nisar H., Ahmad I. Refractive index of biological tissues: Review, measurement techniques, and applications // Photodiagnosis Photodyn. Ther. 2021. Vol. 33. EN 102192. https://doi.org/10.1016/j.pdpdt.2021.102192  
  23. Lazareva E. N., Oliveira L., Yanina I. Yu., Chernomyrdin N. V., Musina G. R., Tuchina D. K., Bashkatov A. N., Zaytsev K. I., Tuchin V. V. Refractive index measurements of tissue and blood components and OCAs in a wide spectral range // Handbook of Tissue Optical Clearing. CRC Press, 2022. P. 141–166.  
  24. Genina E. A. Tissue optical clearing: State of the art and prospects // Diagnostics. 2022. Vol. 12, № 7. EN 1534. https://doi.org/10.3390/diagnostics12071534  
  25. Wang R. K. Modelling optical properties of soft tissue by fractal distribution of scatterers // Journal of Modern Optics. 2000. Vol. 47, № 1. P. 103–120.  
  26. Bashkatov A. N., Genina E. A., Kochubey V. I., Tuchin V. V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm // Journal of Physics D: Applied Physics. 2005. Vol. 38, № 15. P. 25–43. https://doi.org/10.1088/0022-3727/38/15/004  
  27. Zhao Z., Ma J., Wang Y., Xu Z., Zhao L., Zhao J., Hong G., Liu T. Antimicrobial photodynamic therapy combined with antibiotic in the treatment of rats with third-degree burns // Front. Microbiol. 2021. Vol. 12. EN 622410. https://doi.org/10.3389/fmicb.2021.622410  
  28. Svenskaya Y. I., Verkhovskii R. A., Zaytsev S. M., Lademann J., Genina E. A. Current issues in optical monitoring of drug delivery via hair follicles // Adv. Drug. Deliv. Rev. 2025. Vol. 217. EN 115477. https://doi.org/10.1016/j.addr.2024.115477
Received: 
12.02.2025
Accepted: 
18.02.2025
Published: 
31.03.2025
Short text (in English):
(downloads: 12)