Izvestiya of Saratov University.
ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


microorganisms

Using TIО2 Nanoparticles for the Photodynamic Action of Led Blue (405 nm) Radiation on Microorganisms

The regularities of radiation-induced changes in the population quan­ tity of Staphylococcus aureus, Escherichia coli, Candida albicans in the presence of blue LED light and nanoparticles were studied. The effect of the blue radiation on the bacteria S. aureus was not dose­ dependent.

Gold nanostars as a photoagent under the antimicrobial action of infrared (808 nm) laser radiation

Gold nanostars with an average core diameter of 122,2 nm and a spike length of 114,6 nm were synthesized and characterized at a concentration of 5,36×1010 pcs/ml with an absorption maximum of 840 nm. Gold nanostars were coated with thiolated polyethylene glycol, its amount was about 8×104 molecules per 1 particle and about 4,4×1015 molecules/ml in the colloid. The zeta potential of gold nanostars coated with PEG-SH was −2.3 mV.

Some aspects of antimicrobial photodynamic eff ects

Antimicrobial phototherapy is an alternative method for combating clinically signifi cant microorganisms associated with lesions of the skin, mucous membranes of the oral cavity, respiratory, gastrointestinal and urogenital tracts. The method uses non-toxic dyes called photosensitizers, molecules that can be excited by harmless visible light to form reactive oxygen species.

The Study of Antibacterial Properties of Coatins Based on Metal (Ag, Zn) Nanoparticles in Silicon Dioxide Matrix

The influence of coatings on the basis of Ag and Zn metal nanoparticles in a silica matrix in combination with ultraviolet (365 nm) radiation on Staphylococcus aureus 209 P bacteria was studied. It was shown that the investigated coatings without access to light inhibit the growth of microorganisms by 45% after 3 hours of incubation and 55–70% after 5 hours of incubation. Enhancement of antibacterial properties of nanocoatings was achieved by exposure to UV (365 nm) radiation.

Antimicrobial Photodynamic Effects Using Coatings Based on Metal Nanoparticles (Ag, Au)

The combined effect of coatings based on nanoparticles of metals Ag, Au, ultraviolet (365 nm, UVR) and infrared (808 nm, IRR) radiation on Staphylococcus aureus 209 P was studied. Decrease in numbers was shown by 2% in the case of silver coatings and by 8% in the case of gold coatings after 1 h incubation. However, exposure of the IRR to bacterial suspensions caused the death of 43% of the population after 5 min, 86% of the population after 30 min.

New Gypsum-Titanium Composites for Antimicrobial Photocatalytic Action on Staphylococcus aureus

The last decade has allowed the creation of new composite photocatalytic materials with a wide range of applications. Antimicrobial coatings based on photocatalytic materials are environmentally friendly and effective for use in health care, the food industry, enterprises and service facilities. This study is devoted to the study of the antibacterial activity of gypsum-titanium nanocomposites.

Photocatalytic effect of led radiation (405 nm) and new Al2O3 3D-nanocomposites on the growth of Staphylococcus aureus

The progressive growth of bacterial resistance to antibiotic drugs requires the creation of highly efficient nanomaterials. Aluminum oxide is a stable non-toxic semiconductor material; however, the photocatalytic properties of its modifications in relation to microorganisms are not well understood. In this study, we used new 3D composites of aluminum oxyhydroxide (Al2O3 ? nH2O) in three modifications (?, ? and ?), which are a mesh of 150 nm nanofibrils.

Some aspects of antimicrobial photodynamic eff ects

Antimicrobial phototherapy is an alternative method for combating clinically signifi cant microorganisms associated with lesions of the skin, mucous membranes of the oral cavity, respiratory, gastrointestinal and urogenital tracts. The method uses non-toxic dyes called photosensitizers, molecules that can be excited by harmless visible light to form reactive oxygen species. Numerous studies of the method in vitro and in vivo have demonstrated the destruction of microorganisms or a signifi cant reduction in their number.