Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Full text:
(downloads: 16)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
577.344.3.579.61.666.1.056

New Gypsum-Titanium Composites for Antimicrobial Photocatalytic Action on Staphylococcus aureus

Autors: 
Tuchina Elena S., Saratov State University
Korchenova Maria V., Saratov State University
Svetlakova Anna V., Saratov State University
Kordas Krisztian, University of Oulu
Tuchin Valeriy V., Saratov State University
Abstract: 

The last decade has allowed the creation of new composite photocatalytic materials with a wide range of applications. Antimicrobial coatings based on photocatalytic materials are environmentally friendly and effective for use in health care, the food industry, enterprises and service facilities. This study is devoted to the study of the antibacterial activity of gypsum-titanium nanocomposites. Titanium dioxide nanowires immobilized in gypsum, doped with palladium and supplemented with nitrogen and hydrogen, when illuminated by LED sources in the UV and violet spectral regions (365, 385, 405 nm) were tested. It was shown that materials with a high content of gypsum and doped with palladium exhibit the highest antibacterial activity (up to 90–97% of the death of the microbial population) due to better absorption of light and its diffusion. The most effective was the complex action of radiation and G-Ti-Pd-7 sample containing 10 wt.% TiO2 nanowires that were doped with nitrogen and palladium.

Reference: 
  1. Reshedko G. L., Ryabkova E. L., Krechikova O. I., Sukhorukova M. V., Shevchenko O. V., Eidelshtein M. V., Kozlov R. S. Antibiotic resistance of gram-negative pathogens of nosocomial infections in the ICU of multidisciplinary hospitals in Russia. Diseases and Pathogens, 2008, vol. 10, no. 2, pp. 96–112 (in Russian). 
  2. Thompson K. A., Bennett A. M., Walker J. T., Hosp J. Aerosol survival of Staphylococcus epidermidis // Journal of Hospital Infection. 2011. Vol. 78, № 3. P. 216–220.
  3. Martin J. K., Sheehan J. K., Bratton B. P., Moore G. M., Mateus A., Li S. H.-J., Kim H., Rabinowitz J. D., Typas A., Savitski M. M., Wilson M. Z., Gitai Z. A Dual-Mechanism Antibiotic Kills Gram-Negative Bacteria and Avoids Drug Resistance // The Cell. 2020. Vol. 5. DOI: https://doi.org/10.1016/j.cell.2020.05.005
  4. Lipovsky A., Nitzan Y., Friedmann H., Lubart R. Sensitivity of Staphylococcus aureus Strains to Broadband Visible Light // Photochem. Photobiol. 2009. Vol. 85, № 1. P. 255–260.
  5. Szczawinski J., Tomaszewski H., Jackowska-Tracz A., Szczawinska M. E. Survival of Staphylococcus aureus exposed to UV radiation on the surface of ceramic tiles coated with TiO2 // Polish Journal of Veterinary Sciences. 2011. Vol. 14, № 1. P. 41–46.
  6. Subhi H., Reza F., Husein A., Nurul A. A. Cytotoxicity of gypsum-based biomaterial for direct pulp capping using stem cells from human exfoliated deciduous teeth // J. Conserv Dent. 2018. Vol. 21, № 1. P. 21–25.
  7. Nurieva E. M., Korolev E. A., Bakhtin A. I., Halliulin M. I., Altykis M. G., Rakhimov R. Z., Sabanina Yu. V. Comprehensive studies of the physicomechanical and structural properties of multiphase gypsum binders minerals during long-term storage. Mineralogy of Technogenesis, 2006, vol. 6, no. 1, pp. 333–339 (in Russian).
  8. Fathutdinova L. M., Khaliullin T. O., Zalyalov R. R. Toxicity of artifi cial nanoparticles. Kazan Medical Journal, 2009, vol. 90, no. 4, pp. 578–584 (in Russian).
  9. Abdullin I. Sh., Kanarskaya Z. A., Khubathuzin A. A., Kalashnikov D. I., Gatina E. B. Nanodispersed materials based on titanium oxide in the microbiological, medical and food industries. Bulletin of Kazan Technical University, 2012, vol. 10, no. 12, pp. 158–165 (in Russian).
  10. Makvandi P., Wang C.-Y., Nazarzadeh Zare E., Borzacchiello A., Niu L., Tay F. Metal-based nanomaterials in biomedical applications : Antimicrobial activity and cytotoxicity aspects // Adv. Funct. Mater. 2020. Vol. 30, № 22. DOI: https://doi.org/10.1002/adfm.201910021
  11. Fujishima A., Zhang X. Titanium dioxide photocatalysis : present situation and future approaches // C. R. Chimie. 2006. Vol. 9. P. 750–760.
  12. Dastjerdi R., Montazer M. A review on the application of inorganic nano-structured materials in the modifi cation of textiles : Focus on anti-microbial properties // Colloids and Surfaces B: Biointerfaces. 2010. Vol. 79, № 1. P. 5–18.
  13. Gurov A. A., Pozorova S. E. Creating polyphase ceramic samples based on nanosized titanium dioxide. Master’s Journal, 2016, vol. 1, pp. 36–40.
  14. Tuchina E. S., Gvozdev G. A., Kosobudskiy I. D., Shih W.-C., Tuchin V. V. Antimicrobial Photodynamic Effects Using Coatings Based on Metal Nanoparticles (Ag, Au). Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2019, vol. 19, iss. 3, pp. 322–325 (in Russian). DOI: https://doi.org/10.18500/1816- 9775-2019-19-3-322-325
  15. Jing Z., Wang C., Wang G., Li W., Lu D. Preparation and antibacterial activities of undoped and palladium doped titania nanoparticles // J. Sol-Gel Sci. Technol. 2010. Vol. 56. P. 121–127.
  16. Sarkar A., Shchukarev A., Leino A.-R., Kordas K., Mikkola J.-P., Petrov P. O., Tuchina E. S., Popov A. P., Darvin M. E., Meinke M., Lademann J., Tuchin V. V. Photocatalytic activity of TiO2 nanoparticles: effect of thermal annealing under various gaseous atmospheres // Nanotechnology. 2012. Vol. 23. P. 1–8.
  17. Mohl М., Dombovari А., Tuchina E. S., Petrov P. O., Bibikova O. A., Skovorodkin I., Popov A. P., Rautio A.-R., Sarkar A., Mikkola J.-P., Huuhtanen M., Vainio S., Keiski R. L., Prilepsky A., Kukovecz A., Konya Z., Tuchin V. V., Kordas K. Titania nanofibers in gypsum composites: an antibacterial and cytotoxicology study // Journal of Materials Chemistry B. 2014. Vol. 2. P. 1307–1316.
  18. Carneiro I., Carvalho S., Henrique R., Oliveira L., Tuchin V. Moving tissue spectral window to the deepultraviolet via optical clearing // J. Biophotonics. 2019. Vol. 12, № 12. P. e201900181.
  19. Selifonov A. A., Tuchin V. V. Control of the optical properties of gum and dentin tissue of a human tooth on laser lines in the range 200–800 nm. Quantum Electronics, 2020, vol. 50, no. 1, pp. 47–54 (in Russian).
Received: 
31.08.2020