Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Full text:
(downloads: 169)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
577.344.3

ФОТОДИНАМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА МИКРООРГАНИЗМЫ С ИСПОЛЬЗОВАНИЕМ СИНЕГО (405 нм) ИЗЛУЧЕНИЯ И НАНОЧАСТИЦ ОКСИДА ЖЕЛЕЗА (III)

Autors: 
Tuchina Elena S., Saratov State University
Petrov Pavel Olegovich, Saratov State University
Kochubey Vyacheslav I., Saratov State University
Tuchin Valeriy V., Saratov State University
Abstract: 

Изучено влияние светодиодного синего (405 нм) излучения в со-
четании с наночастицами оксида железа III на бактерии Staphylococcus
aureus 209 P, S. simulans и Dermabacter hominis. Показано,
что синий (405 нм) свет в сочетании с наночастицами Fe2O3 об-
ладал угнетающим действием в отношении Dermabacter hominis:
снижение численности отмечено на 94% после 30 мин воздей-
ствия.
 

Reference: 

1. Schaefer H.-E. Nanoscience. Berlin: Springer, 2010.
790 p.
2. Баллюзек Ф. В., Куркаев А. С., Сентле Л. Нанотехно-
логии в медицине. СПб., 2010. 103 с.
3. Microbiology of wounds / eds. S. Parcival, K. Cuttling.
N.Y. : CRC Press, 386 p.
4. Hamblin M. R., Hasan T. Photodynamic therapy: a new
antimicrobial approach to infectious disease? // J. Photochem.
Photobiol. 2004. № 3. P. 436–450.

6. Premanathan M., Karthikeyan K., Jeyasubramanian K.,
Manivannan G. Selective toxicity of ZnO nanoparticles
toward Gram-positive bacteria and cancer cells by
apoptosis through lipid peroxidation // Nanomed.:
Nanotechnol. Biol. Med. 2011. Vol. 7, № 2. P. 184–192.
7. Morones J. R., Elechiguerra J. L., Camacho A., Holt K.,
Kouri J. B., Ramires T. J., Yacaman M. J. The bactericidal
effect of silver nanoparticles // Nanotechnology. 2005.
Vol. 16. P. 2346–2353.
8. Sunada K., Watanabe T., Hashimoto K. Studies on
photokilling of bacteria on TiO2 thin fi lm // J. Photochem.
Photobiol. A. 2003. Vol. 156. P. 227–233.
9. Kiwi J., Nadtochenko V. Evidence for the mechanism of
photocatalytic degradation of the bacterial wall membrane
at the TiO2 interface by ATR-FTIR and laser kinetic
spectroscopy // Langmuir. 2005. Vol. 21. P. 4631–4641
10. Chirita M., Grozescu I. Fe2O3 – nanoparticles, physical
properties and their photochemical and photo electrochemical
applications // Chem. Bull. «POLITEHNICA».
2009. Vol. 54(68), № 1. P. 1–8.
11. Huang W. -C., Tsai P. -J., Chen Y. -C. Functional Gold
Nanoclusters as Antimicrobial Agents for Antibioticresistant
Bacteria // Nanomedicine. 2007. Vol. 2.
P. 777–787.
12. Van der Meulen F.W., Ibrahim K., Sterenborg H.J.C.M.,
Alphen L.V., Maikoe A., Dankert J. Photodynamic
destruction of Haemophilus parainfluenzae by endogenously
produced porphyrins // J. Photochem. Photobiol.
B. 1997. Vol. 40. P.204–208.
13. Ashkenazi H., Malik Z., Harth Y., Nitzan Y. Eradication
of Propionibacterium acnes by its endogenic porphyrins
after illumination with high intensity blue ligh // Immunol.
Med. Microbiol. 2003. Vol. 35. P. 17–24.
14. Enwemeka C. S., Williams D., Hollosi S., Yens D.,
Enwemeka S. K. Visible 405-nm SLD light photo-destroys
meticillin-resistance Staphylococcus aureus in vitro //
Lasers Surg. Med. 2008. Vol. 40. P. 734–737.
15. Tuchina E. S., Tuchin V. V. Low-intensity LED (625 and
405 nm) and laser (805 nm) killing of Propionibacterium
acnes and Staphylococcus epidermidis // Proceedengs of
SPIE. 2009. Vol. 7165. P. 716501–716507.
16. Sailer R., Strauss W. S. L., Konig K., Ruck A., Steiner R.
Correlation between porphyrin biosynthesis and photodynamic
inactivation of Pseudomonas aeruginosa after
incubation with 5-aminolevulinic acid. // J. Photochem.
Photobiol. B. 1997. Vol. 36. P. 236–242.
17. Clauditz A., Resch A., Wieland K. P., Peschel A., Gotz F.
Staphyloxanthin plays a role in the fi tness of Staphylococcus
aureus and its ability to cope with oxidative stress //
Infection and immunity. 2006. Vol. 74, № 8. P. 4950–4953.
18. Schrand A. M., Rahman M. F., Hussain S. M. Schlager J. J.,
Smith D. A., Syed A. F. Metal-based nonoparticles and
their toxicity assessment // Nanomed. Nanobiotech. 2010.
Vol. 2. P. 544–568.
19. Dehner C., Barton L., Maurice P. A., Dubois J. L. Sizedependent
bioavailability of hematine (?- Fe2O3) nanoparticles
to common aerobic bacteria // Environ. Sci / Technol.
2011. Vol. 45. P. 977–983.
20. Jiang J., Oberdrster G., Elder A., Gelein R., Mercer P.,
Biswas P. Does nanoparticle activity depend upon size and
crystal phase? // Nanotoxicology. 2008. Vol. 2. P. 33–42.
21. Zharov V. P., Kim J. -W., Curiel D. T., Everts M. Selfassembling
nanoclusters in living systems: application for
integrated photothermal nanodiagnostics and nanotherapy
// J. Nanomed.: Nanotechnol. Biol. Med. 2005. Vol. I.
P. 326–345.
22. Larson Т. А., Bankson J., Aaron J., Sokolov K. Hybrid
plasmonic magnetic nanoparticles as molecular specifi c
agents for MRI / optical imaging and photothermal therapy
of cancer cells // Nanotechnology. 2007. Vol. 18.
5. Kotoku Y., Kato J., Akashi G., Hirai Y., Ishihra K.
Bactericidal effect of a 405-nm diode laser on Porphyromonas
gingivalis // Laser Phys. Lett. 2009. Vol. 6, № 5.
P. 388–392.