Preparation and Identification of the Molecular Properties of Alginate Synthesized by the Cultivation of Azotobacter vinelandii D-05
It is known that bacterial alginates are widely used in biomedicine as carriers in the immobilization of cells, enzymes and drugs. Their functional properties depend on their monomeric composition and molecular weight and vary depending on the source and the cultivation conditions. It was established that molasses (waste of sugar beet production) can be used as an effective and cheap source of nutrition for the growth of the bacterium Azotobacter vinelandii strain D-05 and the production of alginate. Submerged periodic cultivation of the producer on media of different composition was used. The properties of the alginate were controlled by IR spectroscopy.It was shown, that during A. vinelandii cultivation on molasses media, the best substrate concentration for the polysaccharide synthesis is 5% (by sucrose). The IR spectrum of the polysaccharide isolated from the culture liquid and purified alginate was similar. The alginate consists of several fractions with a different molecular weight the largest having a molecular mass of 300 kD.
1. Шутова В. В., Ведяшкина Т. А., Ивинкина Т. И., Ревин В. В. Получение клеевых составов и материалов при использовании культуральной жидкости полисахаридсинтезирующих микроорганизмов // Изв. вузов. Сер. Строительство. 2010. № 3. С. 31-36.
2. Шутова В. В., Ревин В. В. Химическая модификация декстрансодержащей культуральной жидкости для получения адгезивов // Актуальная биотехнология. 2014. № 3 (10). С. 118-119.
3. Donati I., Paoletti S. Material properties of alginates // Alginates : Biology and Applications / ed. B. H. A. Rehm. Berlin ; Heidelberg : Springer Verlag, 2009. Р. 1-53.
4. Ревин В. В., Атыкян Н. А., Водяков В. Н., Лияськина Е. В., Кадималиев Д. А., Шутова В. В. Общая биотехнология. Саранск : Изд-во Морд. ун-та, 2015. 604 с.
5. Nivens D. E., Ohman D. E., Williams J., Franklin M. J. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofi lms // J. Bacteriol. 2001. Vol. 183, № 17. Р. 1045-1057.
6. Sabra W., Zeng A.P. Microbial production of alginates : physiology and process aspects // Alginates : Biology and Applications / ed. B. H. A. Rehm. Berlin ; Heidelberg : Springer Verlag, 2009. Р. 153-173.
7. Galindo E., Pena C., Nunez C., Segura D., Espin G. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii // Microbial Cell Factories. 2007. Vol. 6, № 1. Р. 7.
8. Pena C., Campos N., Galindo E. Changes in alginate molecular mass distributions, broth viscosity and morphology of Azotobacter vinelandii cultured in shake fl asks // Appl. Microbiol. and Biotechnol. 1997. Vol. 48, № 4. Р. 211-223.
9. Revin V. V., Shutova V. V., Novokuptsev N. V. Biocomposite materials from lignocellulose raw materials and levan produced by Azotobacter vinelandii // J. of Biotechnol. 2016. Vol. 231. Supplement. P. S8.
10. Ревин В. В., Шутова В. В., Новокупцев Н. В. Биокомпозиционные материалы на основе ультрадисперсных частиц древесины и левана, полученного путем микробного биосинтеза Azotobacter vinelandii Д-08 // Фундаментальные исследования. 2016. № 1. С. 53-57.
11. Mejia M. A., Segura D., Espin G., Galindo E., Pena C. Two-stage fermentation process for alginate production by Azotobacter vinelandii mutant altered in poli-betahydroxybutyrate (PHB) synthesis // J. Appl. Microbiol. 2010. Vol. 108, № 1. Р. 55-61.
12. Flores C., Diaz-Barrera A., Martinez F., Galindo E., Pena C. Role of oxygen in the polymerization and depolymerization of alginate produced by Azotobacter vinelandii // J. of Chem. Technol. and Biotechnol. 2015. Vol. 90, № 3. Р. 356-365.
13. Diaz-Barrera A., Martinez F., Pezoa F. G., Acevedo F. Evaluation of gene expression and alginate production in response to oxygen transfer in continuous culture of Azotobacter vinelandii // PLoS One. 2014. Vol. 9, № 8. Р. e105993.
14. Diaz-Barrera A., Silva P., Berrios J., Acevedo F. Manipulating the molecular weight of alginate produced by Azotobacter vinelandii in continuons culture // Bioresour Technol. 2010. Vol. 101, № 23. P. 9405-9408.
15. Christensen B. E. Alginates as biomaterials in tissue engineering // Carbohydrate Chemistry : Chem. and Biol. Appr. 2011. Vol. 37. Р. 227-258.
16. Diaz-Barrera A., Soto E. Biotechnological uses of Azotobacter vinelandii : Current state, limits and prospects // Afr. J. Biotechnol. 2010. Vol. 9, № 33. P. 5240-5250.
17. Microbial production of biopolymers and polymer precursors : applications and perspectives / ed. B. H. A. Rehm. Norfolk, UK : Caister Acad. Press, 2009. 293 р.
18. Diaz-Barrera A., Silva P., Avalos R., Acevedo F. Alginate molecular mass produced by Azotobacter vinelandii in response to changes of the O2 transfer rate in chemostat cultures // Biotechnol. Lett. 2009. Vol. 31, № 6. Р. 825-829.
19. Diaz-Barrera A., Gutierrez J., Martinez F., Altamirano C. Production of alginate by Azotobacter vinelandii grown at two bioreactor scales under oxygen-limited conditions // Bioprocess Biosyst. Eng. 2014. Vol. 37, № 6. P. 1133-1140.
20. Шутова В. В., Котина Е. А. Использование мелассы в средах для культивирования левансинтезирующего штамма Аzоtоbасtеr vinеlаndii // Перспективы развития химических и биологических технологий в 21-м веке : сб. ст. Саранск : ООО «Референт», 2015. С. 54-57.
21. Логинов Я. О., Худайгулов Г. Г., Четвериков С. П., Мелентьев А. И., Логинов О. Н. Биополимер альгинатной природы с преобладанием L-гулуроновой кислоты // Прикладная биохимия и микробиология. 2011. Т. 47, №. 3. С. 343-347.
22. Огурцов А. Н. Молекулярная биотехнология микробиологических систем : учеб. пособие. Харьков : НТУ «ХПИ», 2012. 142 с.
23. Savalgi V., Savalgi V. Alginate production by Azotobacter vinelandii in batch culture // J. of Gen. and Appl. Microbiol. 1992. Vol. 38, № 6. P. 641-645.
24. Larkin P. J. Infrared and Raman spectroscopy : principles and spectral interpretation. Waltham ; Elsevier, 2011. 230 р.
25. Chand?a N. P., Matsuhiro B., Vasquez A. E. Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy // Carbohyd. Polym. 2001. Vol. 46, № 1. Р. 81-87.
26. Leal D., Matsuhiro B., Rossi M., Caruso F. FT-IR spectra of alginic acid block fractions in three species of brown seaweeds // Carbohydr. Res. 2008. Vol. 343, № 2. Р. 308-316.
27. Liu Y., Zhao X. R., Peng Y. L., Wang D., Yang L., Peng H., Wang D. Y. Effect of reactive time on fl ame retardancy and thermal degradation behavior of bio-based zinc alginate fi lm // Polymer Degradation and Stability. 2016. Vol. 127. Р. 20-31.
28. Subramanian V., Ganapathi K., Dakshinamoorthy B. FT-IR, 1H-NMR and 13C-NMR Spectroscopy of alginate extracted from turbinaria decurrens (Phaeophyta) // World J. of Pharm. and Pharm. Sci. 2015. Vol. 4, № 12. Р. 761-771.
29. Tian G., Ji Q., Xu D., Tan L., Quan F., Xia Y. The effect of zinc ion content on fl ame retardance and termal degradation of alginate fi bers // Fiber Polym. 2013. Vol. 14, № 5. Р. 767-771.
30. Pena C., Miranda L., Segura D., Nunez C., Espin G., Galindo E. Alginate production by Azotobacter vinelandii mutants // J. of Industrial Microbiol. and Biotechnol. 2002. Vol. 29, № 5. Р. 209-213.