Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Full text:
(downloads: 193)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
612.825

Changes in the Permeability of the Blood-Brain Barrier in the Development of Alzheimer’s Disease in Mice

Autors: 
Zinchenko Ekaterina M., Saratov State University
Klimova Maria M., Saratov State University
Shirokov Aleksandr A., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Novolokin Nikita A., Saratov State Medical University
Martinov Dmitry V., Saratov State University
Antonova Tatyana S., Saratov State University
Blohina Inna A., Saratov State University
Agranovich Ilana M., Saratov State University
Terskov Andrey V., Saratov State University
Semyachkina-Glushkovskaya Oksana V., Saratov State University
Abstract: 

In our study on mice with an injection model of Alzheimer’s disease (AD), beta-amyloid detection in the brain tissue was evaluated using immunohistochemistry and confocal analysis. An accumulation of toxic protein was shown in different areas of the brain, predominantly in the cortex and in the hippocamp (place of beta-amyloid injection). Neurofunctional tests were conducted to confirm the development of AD. It is uncovered that accumulation of ?-amyloid in the brain was associated with development of the sensory, motor, coordinating disjunctions, and also with memory impairment in tested mice. Confocal analysis of the blood-brain barrier (BBB) permeability to fluorescent beta-amyloid revealed a significant leakage of beta-amyloid from the cerebral vessels into the brain tissues in mice with AD. The results indicate the effectiveness of the use of the Alzheimer’s injection model in mice to study the non-genetic mechanisms of the development of a neurodegenerative disease associated with impaired BBB function.

Reference: 
  1. Yahno N. N., Zaharov V. V., Lokshina A. V., Koberskaya N. N., Mhitaryan E. A. Demencii: ruk-vo dlya vrachej [Dementia: a guide for doctors]. 3-e izd. Moscow, MEDpress-inform Publ., 2011. 272 p. (in Russian).
  2.  Parfenov V. A., Zaharov I. S. Kognitivnye rasstrojstva [Cognitive disorders]. Moscow, Remedium Publ., 2014. 192 p. (in Russian).
  3. Leushina A. V., Nurullin L. F., Petuhova E. O., Zefi rov A. L., Muhamed'yarov M. A. Adrenergic mechanisms of myocardial contractility regulation in the genetic model of Alzheimer’s disease. Kazan Medical Journal, 2015, vol. 96, no. 1, pp. 50–55 (in Russian).
  4. Koberskaya N. N. Alzheimer’s disease: new diagnostic criteria and therapeutic aspects depending on the stage of the disease. Medical Council, 2017, no. 10, pp. 18–24 (in Russian).
  5. Zagrebin V. L., Antoshkin O. N., Fedorova O. V., Sargsyan S. A. Pathogenetic mechanisms of Alzheimer’s disease development. Journal Volgograd State Medical University, 2016, vol. 3, no. 59, pp. 7–12 (in Russian).
  6. Ubhi K., Masliah E. Alzheimer’s disease: recent advances and future perspectives // J. Alzheimers Dis. 2013. Vol. 33, № 1. P. 185–194.
  7. Kolobov V. V., Storozheva Z. I. Features of in vitro, in silico and transgenic models of Alzheimer’s disease. Annals of Clinical and Experimental Neurology, 2014, vol. 8, no. 1, pp. 34–39 (in Russian).
  8. Graeber М. В., Moran L. B. Mechanisms of cell death in neurodegenerative disease : fashion, fi ction, and facts // Brain Pathol. 2002. Vol. 12, № 3. Р. 385–390.
  9. Grotheet М., Heinsen H., Teipel S. J. Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer’s disease // Biol. Psychiatry. 2012. Vol. 71, № 9. Р. 805–813.
  10. Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease // Trends Pharmacol. Sci. 1991. Vol. 12, № 10. Р. 383–388.
  11. Mudher A., Lovestone S. Alzheimer’s disease-do tauists and baptists fi nally shake hands? // Trends Neurosci. 2002. Vol. 25, № 1. P. 22–26.
  12. Fluhreret R., Haass C. Intramembrane proteolysis by ?-secretase and signal peptide peptidases. Intracellular traffi c and neurodegenerative disorders // Springer. 2009. P. 11–26.
  13. Farooque A. A. Neurodegeneration in neuronal trauma, neurodegenerative diseases, and neuropsychiatric disorders. Neurochemical aspects of neurotraumatic and neurodegenerative diseases // Springer. 2010. P. 1–25.
  14. Farooque A. A. Neurochemical aspects of neurodegenerative disease. Neurochemical aspects of neurotraumatic and neurodegenerative diseases // Springer. 2010. P. 249–324.
  15. McDonald M. P., Dahl E. E., Overmier J. B., Mantyh P., Cleary J. Effects of exogenous ?-amyloid peptide on retention for special learning // Behav. Neural Biol.1994. Vol. 62. P. 60–67.
  16. Yamada K., Nabeshima T. Animal models of Alzheimer’s disease and evaluation of anti-dementia drugs // Pharmacology & Therapeutics. 2000. Vol. 88. P. 93–163.
  17. Iqbal K., Bolognin S., Wang X., Basurto-Islas G., Blanchard J., Tung Y. C. Animal models of the sporadic form of Alzheimer’s disease : focus on the disease and not just the lesions // J. Alzheimers Dis. 2013.Vol. 37. P. 469–474.
  18. Demetrius L. A., Magistretti P. J., Pellerin L. Alzheimer’s disease : the amyloid hypothesis and the inverse Warburg test // Front. Physiol. 2015. Vol. 5. P. 2–20.
  19. Popugaeva E. A., Vlasova O. L., Bezprozvannyj I. B. The role of intracellular calcium in the development of Alzheimer’s disease pathogenesis. St. Peterburg State Polytechnical Universiy Journal. Physics and Matematics, 2014, vol. 1, no. 189, pp. 79–90 (in Russian).
  20. Stutzmann G. E. The pathogenesis of Alzheimers disease is it a lifelong «calciumopathy»? // Neuroscientist. 2007. Vol. 13, № 5. P. 546–59.
  21. Bezprozvanny I., Mattson M. P. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease // Trends Neurosci. 2008. Vol. 31, № 9. P. 454–63.
  22. Berridge M. J. Neuronal calcium signaling // Neuron. 1998. Vol. 21, № 1. P. 13–26.
  23. Chernyuk D. P., Vlasova O. L., Bezprozvannyj I. B., Popugaeva E. A. Reducing the number of amyloid plaques in the cerebral cortex of mice by hyperexpression of the protein STIM 2. St. Peterburg State Polytechnical Universiy Journal. Physics and Matematics, 2016, vol. 253, no. 4, pp. 139–149 (in Russian).
  24.  Bogachuk A. P., Storozheva Z. I., Telegin G. B., Chernov A. S., Proshin A. T., Sherstnev V. V., Zolotarev Yu. A., Lipkin V. M. Specifi c activity of amide form of HLDF-6 peptide: study on transgenic model of Alzheimer’s disease. Acta Naturae, 2017, vol. 33, no. 3, pp. 68–74 (in Russian)
  25. Hardy J., Selkoe D. J. The amyloid hypothesis Alzheimer’s disease: progress problems theroadt therapeutics // Science. 2002. Vol. 297, № 5580. P. 353–356.
  26. Bergmans B. A., De Strooper B. ?-secretases : from cell biology to therapeutic strategies // Lancet Neurol. 2010. Vol. 9, № 2. P. 215–226.
  27. Bergmans B. A., De Strooper B. ?-secretases: from cell biology to therapeutic strategies. Lancet Neurol., 2010, vol. 9, no. 2, pp. 215–226.
  28. Cai Z., Qiao P-F. Wan C-Q., Cai M., Zhou N-K., Li Q. Role of Blood-Brain Barrier in Alzheimer’s Disease // J. Alzheimers Dis. 2018. Vol. 63, № 4. P. 1223–1234. DOI: https://doi.org/10.3233/JAD-180098
  29. Burgess A., Dubey S., Yeung S., Hough O., Eterman N., Aubert I., Hynynen K. Alzheimer disease in a mouse model : MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior // Radiology. 2014. Vol. 273. P. 736–745.
  30. Leinenga G., Gotz J. Scanning ultrasound removes amyloid-? and restores memory in an Alzheimer’s disease mouse model // Sci. Transl. Med. 2015. Vol. 7, № 278ra33.
  31. Jordao J. F., Thevenot E., Markham-Coultes K., Scarcelli T., Weng Y. Q., Xhima K. O'Reilly M., Huang Y., McLaurin J., Hynynen K., Aubert I. Amyloid-? plaque reduction, endogenous antibody delivery and glial activation by braintargeted, transcranial focused ultrasound // Exp. Neurol. 2013. Vol. 248. P. 16–29.
  32. Sweeney M. D., Sagare A. P., Zlokovic B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders // Nature Reviews Neurology. 2018. Vol. 14. P. 133–150.
  33. Montagne A., Zhao Z., Zlokovic B. V. Alzheimer’s disease: A matter of blood–brain barrier dysfunction? // J. of Exp. Med. 2017. Vol. 214, № 6. P. 3151. DOI: https://doi.org/10.1084/jem.20171406
  34. Haar M. J. van de, Jansen J. F., Jeukens C. R., Burgmans S., van Buchem M. A., Muller M., Hofman P. A. M., Verhey F. R. J., van Osch M. J. P., Backes W. H. Subtle blood-brain barrier leakage rate and spatial extent : Considerations for dynamic contrast-enhanced MRI // Med. Phys. 2017. Vol. 44. P. 4112–4125.
  35. Brundel M., Heringa S. M., de Bresser J., Koek H. L., Zwanenburg J. J., Kappelle L. J., Luijten P. R., Biessels G. J. High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer’s disease // J. Alzheimers Dis. 2012. Vol. 31, № 2. P. 259–263. DOI: https://doi.org/10.3233/JAD2012-120364
  36. Heringa S. M., Sagare A. P., Zlokovic B. V., Koek H. L., Kappelle L. J., Biessels G. J. Utrecht Vascular Cognitive Impairment (VCI) Study Group. Multiple microbleeds are related to cerebral network disruptions in patients with early Alzheimer’s disease // J. Alzheimers Dis. 2014. Vol. 38, № 1. P. 211–221. DOI: https://doi.org/10.3233/JAD-130542
  37. Haar M. J. van de, Burgmans S., Jansen J. F., Van Osch M. J., Van Buchem M. A., Muller M., Hofman P. A. M., Verhey F. R. J., Backes W. H. Blood-Brain Barrier Leakage in Patients with Early Alzheimer Disease // Radiology. 2016. Vol. 281, № 2. P. 527–535. DOI: https://doi.org/10.1148/radiol.2016152244
  38. Haar M. J. van de, Jansen J. F., van Osch M. J., van Buchem M. A., Muller M., Wong S. M.,Hofman P. A. M., Burgmans S., Verhey F. R. J., Backes W. H. Neurovascular unit impairment in early Alzheimer’s disease measured with magnetic resonance imaging // Neurobiol. Aging. 2016. Vol. 45. P. 190–196. DOI: https://doi.org/10.1016/j.neurobiolaging.2016.06.006
  39. Salmina A. B., Inzhutova A. I., Malinovskaya N. A., Petrova M. M. Endothelial dysfunction and repair in Alzheimer’s type of neurodegeneration : neuronal and glial control // J. Alzheimer’s Disease. 2010. Vol. 22, № 1. P. 17–36.
  40. Nelson A. R., Sweeney M. D., Sagare A. P., Zlokovic B. V. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease // Biochim. Biophys. Acta. 2016. Vol. 1862. P. 887–900.
  41. Hellweg R., Gericke C. A., Jendroska K., Hartung H. D., Cervos-Navarro J. NGF content in the cerebral cortex of nondemented patients with amyloidplaques and in symptomatic Alzheimer’s disease // Int. J. Dev. Neurosci. 1998. Vol. 16. P. 787–794.
  42. Chiaretti A., Barone G., Riccardi R., Antonelli A., Pezzotti P., Genovese O., Tortorolo L., Conti G. NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children // Neurology. 2009. Vol. 72. P. 609–616.
  43. Calissano P., Amadoro G., Matrone C., Ciafre, S., Marolda R., Corsetti V., Ciotti M. T., Mercanti D., Di Luzio A., Severini C., Provenzano C., Canu N. Does the term ‘trophic’ actually mean anti-amyloidogenic? The case of NGF // Cell Death Differ. 2010. № 17. P. 1126–1133.
  44. Calissano P., Matrone C., Amadoro G. Nerve growth factor as a paradigm of neurotrophins related to Alzheimer’s disease // Dev. Neurobiol. 2010. Vol. 70, № 5. P. 372–382.
  45. Winkler J., Thal L. J. Effects of nerve growth factor treatment on rats with lesions of the nucleus basalis magnocellularis produced by ibotenic acid, quisqualic acid, and AMPA // Exp. Neurol. 1995. Vol. 136, № 2. P. 234–250.
  46. Smith D. E., Roberts J., Gage F. H., Tuszynski M. H. Ageassociated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy // Proc. Natl. Acad. Sci. USA. 1999. Vol. 96, № 19. P. 10893–10898.
  47. Povarnina P. Yu., Voroncova O. N., Gudasheva T. A., Ostrovskaya R. U., Seredenin S. B. The original peptide mimetics of nerve growth factor GK-2 restores impaired cognitive functions in rat models of Alzheimer’s disease. Actanaturae, 2013, vol. 5, no. 3, pp. 88–95 (in Russian).
  48. Colangelo A. M., Bianco M. R., Vitagliano L., Cavaliere C., Cirillo G., De Gioia L., Diana D., Colombo D., Redaelli C., Zaccaro L., Morelli G., Papa M., Sarmientos P., Alberghina L., Martegani E. A new nerve growth factor-mimetic peptide active on neuropathic pain in rats // J. Neurosci. 2008. Vol. 28, № 11. P. 2698–2709.
  49. Obianyo O., Ye K. Novel small molecule activators of the Trk family of receptor tyrosine kinases // Biochim. Biophys. Acta. 2013. Vol. 1834. P. 2213–2218.
  50. Skaper S. D. The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors // CNS Neurol. Disord. Drug Targets. 2008. Vol. 7. P. 46–62.
  51. Scarpi D., Cirelli D., Matrone C., Castronovo G., Rosini P., Occhiato E. G., Romano F., Bartali L., Clemente A. M., Bottegoni G., Cavalli A., De Chiara G., Bonini P., Calissano P., Palamara A. T., Garaci E., Torcia M. G., Guarna A., Cozzolino F. Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity // Cell Death Dis. 2012. Vol. 3, № 7. P. 339.