Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

Full text:
(downloads: 123)
Article type: 

Obtaining viable Azospirillum brasilense SR80 cells encapsulated in alginate hydrogel

Kovrizhnikov Aleksandr Viktorovich, Saratov State University
Pylaev Timofey E., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Zakharevich Andrey Machailovich, Saratov State University
Konnova Svetlana Anatolyevna, Saratov State University
Kupryashina Maria Alexandrovna, Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences

Significant researches aimed at the greening of agro-industrial production are focused on obtaining immobilized bacterial preparations with preserved proliferative function and metabolic activity. Herein, we investigated the possibility of bacteria of the genus Azospirillum to be immobilized in Ca-alginate beads. A. brasilense SR80 cells, encapsulated in an alginate hydrogel, were obtained using the “soft” immobilization method based on physical binding. We demonstrated the retained respiratory activity and growth ability of the bacteria during immobilization, thus confirming the advantageous prospects of alginate templates for azospirilla encapsulation

  1. Lellis B., Favaro-Polonio C. Z., Pamphile J. A., Polonio J. C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Bio- Биология 303 technology Research and Innovation, 2019, vol. 3, no. 2, pp. 275–290. https://doi.org/10.1016/j.biori.2019.09.001
  2. Hazrat A. Biodegradation of Synthetic Dyes – A Review. Water, Air, & Soil Pollution, 2010, vol. 213, no. 1, pp. 251–273. https://doi.org/10.1007/s11270-010-0382-4
  3. John R. P., Tyagi R. D., Brar S. K, Surampalli R. Y., Prevost D. Bioencapsulation of microbial cells for targeted agricultural delivery. Crit. Rev. Biotechnol., 2011, vol. 31, no. 3, pp. 211–226. https://doi.org/10.3109/07388551.2010.513327
  4. Wang Q., Zhang S., Li Y., Klassen W. Potential approaches to improving biodegradation of hydrocarbons for bioremediation of crude oil pollution. Journal of Environmental Protection, 2011, no. 2, pp. 47–55. https://doi.org/10.4236/jep.2011.21005
  5. Boopathy R. Factors limiting bioremediation technologies. Bioresour. Technol., 2000, vol. 74, pp. 63–67. https://doi. org/10.1016/S0960-8524(99)00144-3
  6. Kupryashina M. A., Petrov S. V., Ponomareva E. G., Nikitina V. E. Ligninolytic activity of bacteria of the genera Azospirillum and Niveispirillum. Microbiology, 2015, vol. 84, no. 6, pp. 791–795. https://doi.org/10.1134/S0026261715060041
  7. Kupryashina M. A., Ponomareva E. G., Nikitina V. E. Ability of bacteria of the genus Azospirillum to decolorize synthetic dyes. Microbiology, 2020, vol. 89, no. 4, pp. 451–458. https://doi.org/10.1134/S0026261720040074
  8. Park J. K., Chang H. N. Microencapsulation of microbial cells. Biotechnol. Adv., 2000, vol. 18, no. 4, pp. 303–319. https://doi.org/10.1016/S0734-9750(00)00040-9
  9. Rampersad S. N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Basel), 2012, vol. 12, no. 9, pp. 12347–12360. https://doi.org/10.3390/s120912347
  10. Maksimova Yu. G., Maksimov A. Yu. Immobilizovannye kletki i fermenty v biotekhnologii [Immobilized Cells and Enzymes in Biotechnology]. Perm, Perm. Gos. nats. issled. un-t, 2018. 88 p. (in Russian).
  11. Beshay U., El-Enshasy H., Ismail I. M. K., Moawad H. ABD-El-Ghany S. ?-glucanase productivity improvement via cell immobilization of recombinant Escherichia coli cells in different matrices. Pol. J. Microbiol., 2011, vol. 60, no. 2, pp. 133–138.
  12. Vejan P., Khadiran T., Abdullah R., Ismail S., Dadrasnia A. Encapsulation of plant growth promoting Rhizobacteria prospects and potential in agricultural sector: A review. J. Plant Nutr., 2019, vol. 42, pp. 2600–2623. https://doi.org/10.1080/01904167.2019.1659330