Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Arzyamova E. M., Yegorova A. Y. Thionation of 4-((4-oxo-4H-chromen-3-yl)methylene)-2-phenyloxazol-5(4H)-one using the LAWESSON’S reagent. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2024, vol. 24, iss. 2, pp. 122-128. DOI: 10.18500/1816-9775-2024-24-2-122-128, EDN: 547.78

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 24)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
547.787.1:547.814.1
EDN: 
547.78

Thionation of 4-((4-oxo-4H-chromen-3-yl)methylene)-2-phenyloxazol-5(4H)-one using the LAWESSON’S reagent

Autors: 
Abstract: 

Analysis of periodicals has showed that there is no information on the behavior of hybrid heterocyclic systems containing several pharmacophore fragments based on oxazol-5(4H)-ones and chromen-4(4H)-ones in reactions with thionizing reagents under various conditions. The interaction of 4-((4-oxo-4H-chromen-3-yl)methylene)-2-phenyloxazol-5(4H)-one with Lawesson’s reagent (LR) (2,4-bis-[pmethoxyphenyl]) has been studied for the fi rst time – 1,3- dithiaphosphetane-2,4-disulfi de) under conditions of thermal activation of the reaction mixture and the use of a closed reactor in the environment of non-polar solvents. Lawesson’s reagent is used as a mild thioniation agent. The scheme of the interaction has been discussed. Initially, it is assumed that the Lawesson reagent (LR) molecule dissociates into the particles of ylide structure, then the interaction with the carbonyl group of the chromen-4-one fragment of the initial substrate takes place, resulting in the formation of a spirocyclic intermediate, the subsequent decomposition of which produces the fi nal product. It has been established that the use of a closed reactor makes it possible to reduce the transformation time and achieve an increase in the yield of the target product compared to the conventional type of activation of the reaction mixture. It has been shown that under the chosen conditions the transformation proceeds with the preservation of the oxazol-5(4H)-one ring. The composition and structure of the resulting compound have been established on the basis of complex data from elemental analysis, IR and NMR spectroscopy.

Reference: 
  1. Parveen M., Ahmad F., Malla A. M., Azaz S., Silva M. R., Silva P. S. P. [Et3NH][HSO4]-mediated functionalization of hippuric acid: An unprecedented approach to 4-arylidene-2-phenyl-5(4H)-oxazolones // RSC Adv. 2015. Vol. 46, iss. 43. P. 52330–52346. https://doi.org/10.1002/chin.201543140
  2. Arzyamova E. M., Tarasov D. O., Yegorova A. Yu. Synthesis and characterization of hybrid structures based on furan-2(3h)-ones and chromen-4(4h)- ones – potential antibacterial activity // Chemistry Proceedings. 2023. Vol. 14, № 1. https://doi.org/10.3390/ecsoc-27-16062
  3. Salema M. S., El-Helwa E. A. E., Derbala H. A. Y. Development of chromone–pyrazole-based anticancer agents // Russ. J. Bioorganic Chem. 2020. Vol. 46, № 1. P. 77–84. https://doi.org/10.1134/S1068162020010094
  4. Savariz F. C., Foglio M. A., De Carvalho J. E., Ruiz A. L. T. G., Duarte M. C. T., Da Rosa M. F., Meyer E., Sarragiotto M. H. Synthesis and evaluation of new β-carboline3-(4-benzylidene)-4H-oxazol-5-one derivatives as antitumor agents // Molecules. 2012. Vol. 17, № 5. P. 6100–6113. https://doi.org/10.3390/molecules17056100
  5. Rambabu B., Priyanka B., Rao Dr. N. K. Design, synthesis and biological evaluation of a novel series of oxazolones promoted by K3PO4 as catalyst // World J. Pharm. Res. 2023. Vol. 12, iss. 6. P. 916–928. https://doi.org/10.20959/wjpr20236-27858
  6. Apostol T-V., Chifi riuc M. C., Nitulescu G. M., Olaru O. T., Barbuceanu S-F., Socea L-I., Pahontu E. M., Karmezan C. M., Marutescu L. G. In silico and in vitro assessment of antimicrobial and antibiofi lm activity of some 1,3-oxazole-based compounds and their isosteric analogues // Appl. Sci. 2022
  7. Peng F., Liu T., Wang Q., Liu F., Cao X., Yang J., Liu L., Xie C., Xue W. Antibacterial and antiviral activities of 1,3,4-oxadiazole thioether 4 H-chromen-4-one derivatives // J. Agric. Food Chem. 2021. Vol. 69, № 37. P. 11085–11094. https://dx.doi.org/10.1021/acs.jafc.1c03755
  8. Jiang S., Su S., Chen M., Peng F., Zhou Q., Liu T., Liu L., Xue W. Antibacterial activities of novel dithiocarbamate-containing 4H-chromen-4-one derivatives // J. Agric. Food Chem. 2020. Vol. 68, № 20. P. 5641−5647. https://dx.doi.org/10.1021/acs.jafc.0c01652
  9. Kurt-Kızıldoğan A., Akarsu N., Otur Ç., Kivrak A., Aslan-Ertas N., Arslan S., Mutlu D., Konus, M., Yılmaz C., Cetin D., Topal T., Şahin N. A novel 4H-chromen4-one derivative from marine Streptomyces ovatisporus S4702T as potential antibacterial and anti-cancer agent // Anticancer Agents Med. Chem. 2022. Vol. 22, № 2. P. 362–370. https://dx.doi.org/10.2174/18715206 21666210311085748
  10. Cava M. P., Levinson M. I. Thionation reactions of Lawessons reagent // Tetrahedron. 1985. Vol. 41, № 22. Р. 5061–5087. https://doi.org/10.1016/S0040-4020(01)96753-5
  11. Abou-Elmagd W. S. I., Hashem A. I. Synthesis and antitumor activity evaluation of some novel-fused and spiro heterocycles derived from a 2(3H)-furanone derivative // J. Heterocyclic Chem. 2016. Vol. 53, № 1. P. 202–208. https://doi.org/10.1002/jhet.2401
  12. Fitton A. O., Frost J. R., Suschitzky H., Houghton P. G. Conversion of 3-formylchomons into pyrrole and thiophene derivatives // Synthesis. 1977. № 2. P. 133–135. https://doi.org/10.1055/s-1977-24298
  13. Аниськова Т. В., Стулова Е. Г., Бабкина Н. В., Егорова А. Ю. Взаимодействие 5-R-3-арилметилиден3Н-фуран-2-онов с реактивом Лавессона // Международный журнал прикладных и фундаментальных исследований. 2016. № 8-4. С. 512–515. ID: 26725847. EDN: WMVWTX
Received: 
09.12.2023
Accepted: 
19.02.2024
Published: 
31.05.2024
Short text (in English):
(downloads: 12)