Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

For citation:

Kupryashina M. A., Ponomarova E. G., Abdrakhmanova A. S. The effects of phenoloxidase inhibitors on the effi cacy of malachite green decolorization by Azospirillum bacteria. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2024, vol. 24, iss. 1, pp. 58-66. DOI: 10.18500/1816-9775-2024-24-1-58-66, EDN: DNSCSQ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 36)
Article type: 

The effects of phenoloxidase inhibitors on the effi cacy of malachite green decolorization by Azospirillum bacteria

Ponomarova E G, Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Abdrakhmanova Alena S., Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientifi c Centre of the Russian Academy of Sciences (IBPPM RAS)

Synthetic dyes are widely used in various branches of light industry. Due to the insuffi cient effi ciency of industrial painting processes, a large percentage of dyes end up in the wastewater of enterprises in an unmodifi ed form, which creates a huge risk of environmental pollution with these compounds. Triphenylmethane dyes, in particular malachite green, are toxic, allergenic and carcinogenic compounds. To date, biodegradability of triphenylmethane dyes has been shown for some bacteria and fungi producing phenol oxidase complex enzymes, including soil associative bacteria of the genus Azospirillum. Many factors are capable of inducing and inhibiting the biodegradation effi ciency, in particular the enzymatic systems that are involved in bleaching processes. In the present work we studied the eff ects of typical deactivating agents of phenol oxidases, such as H2 O2 , EDTA, SDS-Na, β-mercaptoethanol, dithiothreitol, Tween, and sodium azide, on the azospirilla’s phenol oxidases activity and the ability to decolorize malachite green. It was found that Tween and sodium azide do not have an inhibitory eff ect on azospirillum enzymes and exhibit a total stabilizing eff ect on the entire complex. An inhibitory eff ect from 60 to 100% was noted for laccase and Mn-peroxidase activity under the action of β-mercaptoethanol, dithiothreitol and EDTA, which is directly proportional to the decolorization rate of malachite green. Compared with the latest issues on classical phenol-oxidizing enzymes, our data revealed non-typical properties of the phenol oxidase complex enzymes of azospirillum.

  1. Pearce C. I., Lloyd J. R., Guthrie J. T. The removal of color from textile wastewater using whole bacterial cells: A review // Dyes Pigments. 2003. Vol. 58. P. 179–196. https://doi.org/10.1016/S0143-7208(03)00064-0
  2. Mourid E., Lakraimi1 M., Khattabi E. El., Benaziz L., Berraho M. Removal of remazol brilliant blue R from aqueous solution by adsorption using a calcined layered double hydroxide [Zn2-Al-CO3] // JMES. 2017. Vol. 8, № 3. P. 921–930. https://doi.org/10.1007/s42452-020- 2063-2
  3. Forgacs E., Cserhati T., Oros G. Removal of synthetic dyes from wastewaters: A review // Environment International. 2004. Vol. 30. P. 953–971. https://doi. org//10.1016/j.envint.2004.02.001
  4. Jadhav J. P., Kalyani D. C., Telke A. A., Phugare S. S., Govindwar S. P. Evaluation of the effi cacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effl uent // Bioresour. Technol. 2010. № 101. P. 165–173. https:// doi.org/ 10.1016/j.biortech.2009.08.027
  5. Никитина В. Е., Ветчинкина Е. П., Пономарева Е. Г., Гоголева Ю. В. Фенолоксидазная активность бактерий рода Azospirillum // Микробиология. 2010. Т. 79, № 3. С. 344–351.
  6. Купряшина М. А., Селиванов Н. Ю., Никитина В. Е. Выделение и очистка Mn-пероксидазы Azospirillum brasilense Sp245 // Прикладная биохимия и микробиология. 2012. Т. 48, № 1. С.23–26.
  7. Петров С. В., Купряшина М. А., Пономарева Е. Г., Воробьева С. А., Глинская Е. В., Никитина В. Е. Cкрининг бактерий рода Azospirillum по способности к продукции внеклеточной лигнин-пероксидазы и деградации модельных соединений лигнина и азокрасителей // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2017. Т. 17, вып. 2. С. 170–176. https://doi. org/10.18500/1816-9775-2017-17-2-170-176
  8. Купряшина М. А., Петров С. В., Пономарева Е. Г., Никитина В. Е. Лигнинолитическая активность бактерий родов Azospirillum и Niveispirillum // Микробиология. 2015. Т. 84, № 6. С. 691–696. https://doi.org/10.7868/S0026365615060051
  9. Bugg T. D. H., Ahmad M., Hardiman E. M., Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi // Nat. Prod. Rep. 2011. Vol. 28. P. 1883–1896. https://doi.org/10.1039/c1np00042j
  10. Falade A. O., Eyisia O. A. L., Mabinya L. V., Nwodo U. U., Okoh A. I. Peroxidase production and ligninolytic potentials of freshwater bacteria Raoultella ornithinolytica and Ensifera dhaerens // Biotechnol. Report. 2017. Vol. 16. P. 2–17. https://doi.org/10.1016/j.btre.2017.10.001
  11. Falade A. O., Nwodo U. U., Iweriebor B. C., Green E., Mabinya L. V., Okoh A. I. Lignin peroxidase functionalities and prospective applications// Microbiology Open. 2017. 6:e00394. https://doi.org/10.1002/mbo3.394
  12. Ahmad M., Taylor C. R., Pink D., Burton K., Eastwood D., Bending G. D., Bugg T. D. H. Development of novel assays for lignin degradation: Comparative analysis of bacterial and fungal lignin degraders // Mol. Biosyst. 2010. № 6. P. 815–821. https://doi.org/10.1039/b908966g
  13. Купряшина М. А., Пономарева Е. Г., Никитина В. Е. Способность бактерий рода Azospirillum к деколоризации синтетических красителей // Микробиология. 2020. Т. 89, № 4. С. 453–461. https://doi.org/10.31857/S0026365620040084
  14. Bradford M. M. A rapid and sensitive method for the quantitation of microorganisms qualities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. Vol. 72. P. 248–254.
  15. Nidadavolu S. B., Gudikandula K., Pabba S. K., Maringanti Ch. S. Decolorization of triphenyl methane dyes by Fomitopsis feei // Natural Science. 2013. Vol. 5. P. 30–35. https://doi.org/10.4236/ns.2013.56A005
  16. Banker D. D. Enzymes – a review // Indian J. Med. Sci. 1998. Vol. 52, № 6. P. 265–271. PMID: 9849038.
  17. Kanayama N., Tohru S., Keiichi K. Purifi cation and characterization of an alkaline manganese peroxidase from Aspergillus terreus LD-1 // J. Biosci. Bioeng. 2002. Vol. 93. P. 405–410. https://doi.org/10.1016/S1389-1723(02)80075-5
  18. Asgher M., Iqbal H. M. N. Characterization of a novel manganese peroxidase purifed from solid state culture of Trametes versicolor IBL-04 // BioResources. 2011. Vol. 6. P. 4302–4315. https://doi.org/10.15376/biores.6.4.4317-4330
  19. Vandana T., Kumar S., Swaraj S., Manpal S. Purifi cation, characterization, and biodelignifi cation potential of lignin peroxidase from immobilized Phanerochaete chrysosporium // BioResources. 2019. Vol. 14. P. 5380– 5399. https://doi.org/10.15376/biores.14.3.5380-5399
  20. Shafi eia M., Afzalib F., Karkhanea A. A., Ebrahimic S. M., Haghbeend K. Aminzadeha S. Cohnella sp. A01 laccase: Thermostable, detergent resistant, anti-environmental and industrial pollutants enzyme // Heliyon. 2017. Vol. 5. e02543. https://doi.org/10.1016/j.heliyon.2019.e02543
  21. Parveen K., Usha K., Visvanath B., Reddy B. Kinetic properties of manganese peroxidase from the mushroom Stereum ostrea and its ability to decolorize dyes // J. Microbiol. Biotechnol. 2012. Vol. 22. P. 1540–1548. https://doi.org/10.4014/jmb.1112.12011
  22. Lueangjaroenkit P., Teerapatsaku C., Sakka K., Sakka M., Kimura T., Kunitake E., Chitradon L. Two manganese peroxidases and a laccase of Trametes polyzona KU-RNW027 with novel properties for dye and pharmaceutical product degradation in redox mediator-free system // Mycobiology. 2019. Vol. 47, № 2. P. 217–229. https://doi.org/10.1080/12298093.2019.1589900
  23. Zhou X., Qu Y., Kim B. H. Effects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells // Bioresour. Technol. 2014. Vol. 169. P. 265–270. https://doi.org/10.1016/j.biortech.2014.07.012
  24. Siroosi M., Amoozegar M. A., Khajeh K. Purifi cation and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium Bacillus sp. strain WT // J. Mol. Catal. B. Enzym. 2016. Vol. 134. P. 89–97. https://doi.org/10.1016/j.molcatb.2016.10.001
  25. Valderrama B., Ayala M., Vazquez-Duhalt R. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes // Chem. Biol. 2002. Vol. 9. P. 555–565. https://doi.org/10.1016/S1074-5521(02)00149-7
  26. Ballaminut N., Yamanaka R., Gomes Machado K. Interference of a commercial catalase preparation in laccase and peroxidase activities // Braz. Arch. Biol. Technol. 2009. Vol. 52, № 5. P. 1193–1198. https://doi. org/10.1590/S1516-89132009000500017
  27. Casciello C., Tonin F., Berini F., Fasoli E., Marinelli F., Pollegioni L., Rosini E. A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin // Biotechnol. Rep. (Amst). 2017. Vol. 13. P. 49–57. https://doi.org/10.1016/j. btre.2016.12.005
  28. Diamantidis G., Effosse A., Potier P., Bally R. Purifi cation and characterization of the fi rst bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum // Soil Biol. Biochem. 2000. Vol. 32. P. 919–927. https:// doi.org/10.1016/S0038-0717(99)00221-7
  29. Alexandre G., Jacoud C., Faure D. Population synamics of a motile and a non–motile Azospirillum lipoferum strain during rice colonization and motility variation in the rhizosphere // FEMS Microbiol. Ecol. 1996. Vol. 19. P. 271–278. https://doi.org/10.1111/j.1574-6941.1996. tb00219.x
  30. Pollegioni L., Tonin F., Rosini E. Lignin-degrading enzymes // FEBS J. 2015. Vol. 282. P. 1190–1213. https://doi.org/10.1111/febs.13224
Short text (in English):
(downloads: 24)