Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

For citation:

Kupryashina M. A., Ponomarova E. G. The effect of metal salts on the activity of the phenol oxidase complex enzymes of bacteria of the genus Azospirillum. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 4, pp. 427-436. DOI: 10.18500/1816-9775-2022-22-4-427-436, EDN: PLEYXB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 127)
Полный текст в формате PDF(En):
(downloads: 57)
Article type: 

The effect of metal salts on the activity of the phenol oxidase complex enzymes of bacteria of the genus Azospirillum

Kupryashina Maria Alexandrovna, Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Ponomarova E G, Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences

. Recently, much attention has been paid to the development of technologies for biodegradation of organopollutants and the search for promising biodestructors. The environmental accumulation of lignin-like compounds and synthetic dyes poses a huge threat not only to ecosystems and biodiversity, but also to human health. Phenol oxidases are enzymes with broad substrate specifi city, with oxidizing ability towards various polyphenols and aromatic amines. Therefore the use of phenol oxydases as bioremediation agents is promising due to their unique catalytic properties. In this work we present the results of a study of the eff ect of metal ions on the activity of the azospirilla phenol oxidase complex. It was demonstrated that extracellular laccases of lignin- and Mn-peroxidases of strains Azospirillum baldaniorum Sp245 and Azospirillum brasilense SR80 are quite stable in the presence of the studied metal salts. The enzymatic activity decreased and the eff ectiveness of the organopollutants’ biodegradation effi cacy was inhibited in the presence of Zn2+ ions. The laccase and lignin-peroxidase activity induced by copper ions positively correlated with the ability of lignin degradation by azospirillum. Analysis of the obtained data showed that inhibitors and inducers of authentic extracellular phenol oxidases of both fungi and bacteria are typical for azospirillum enzymes.

  1. Pollegioni L., Tonin F., Rosini E. Lignin-degrading enzymes // FEBS J. 2015. Vol. 282. P. 1190–1213.
  2. Rao M. A., Scelza R., Acevedo F., Diez M. C., Gianfreda L. Removal of dyes from the effl uent of textile and dyestuff manufacturing industry: A review of emergin techniques with reference to biological treatment // Chemosphere. 2014. Vol. 107. P. 145–162.
  3. Falade A. O., Eyisia O. A. L., Mabinya L. V., Nwodo U. U., Okoh A. I. Peroxidase production and ligninolytic potentials of freshwater bacteria Raoultellaornithinolytica and Ensiferadhaerens // Biotechnol. Report. 2017. Vol. 16. P. 2–17.
  4. Falade A. O., Nwodo U. U., Iweriebor B. C., Green E., Mabinya L. V., Okoh A. I. Lignin peroxidase functionalities and prospective applications // Microbiology Open. 2017. Vol. 6. P. e00394.
  5. Bugg T. D. H., Ahmad M., Hardiman E. M., Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi // Nat. Prod. Rep. 2011. Vol. 28. P. 1883–1896.
  6. Никитина В. Е., Ветчинкина Е. П., Пономарева Е. Г., Гоголева Ю. В. Фенолоксидазная активность бактерий рода Azospirillum // Микробиология. 2010. Т. 79, № 3. С. 344–351.
  7. Купряшина М. А., Селиванов Н. Ю., Никитина В. Е. Выделение и очистка Mn-пероксидазы Azospirillumbrasilense Sp245 // Прикл. биохимия и микробиология. 2012. Т. 48, № 1. С.23–26.
  8. Петров С. В., Купряшина М. А., Пономарева Е. Г., Воробьева С. А., Глинская Е. В., Никитина В. Е. Cкрининг бактерий рода Azospirillum по способности к продукции внеклеточной лигнин-пероксидазы и деградации модельных соединений лигнина и азокрасителей // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2017. Т. 17, вып. 2. С. 170–176.
  9. Купряшина М. А., Петров С. В., Пономарева Е. Г., Никитина В. Е. Лигнинолитическая активность бактерий родов Azospirillum и Niveispirillum // Микробиология. 2015. Т. 84, № 6. С. 691–696.
  10. Baldrian P. Fungal laccases – occurrence and properties // FEMS Microbiol. Rev. 2006. Vol. 30. P. 215–242.
  11. Mansur M., Suarez T., Gonzalez A. Diíerential gene expression in the laccase gene family from basidiomycete I–62 (CETC 20197) // Appl. Environ. Microbiol. 1998. Vol. 64, № 2. Р. 771–774.
  12. Soni R. K., Acharya P. B., Modi H. A. Effect of some metals on growth of Pseudomonas aeruginosa ARSKS20 and its decolorization ability of Reactive red 35 // Intern. J. Curr. Microbiol. App. Sci. 2014. Vol. 3. P. 411–419.
  13. Nidadavolu S. B., Gudikandula K., Pabba S. K., Maringanti Ch. S. Decolorization of triphenyl methane dyes by Fomitopsis feei // Natural Science. 2013. Vol. 5. P. 30–35.
  14. Joshi P. A., Mhatre K. J. Microbial effi ciency to degrade сarbol fuchsin and malachite green dyes // Adv. Appl. Sci. Res. 2015. Vol. 6. P. 85–88.
  15. Улахович Н. А., Медянцева Э. П., Бабкина С. С., Кутырева М. П., Гатаулина А. Р. Металлы в живых организмах : учеб. пособие. Казань : Казанский университет, 2012. 102 с.
  16. Sutherland G. R. J., Schick Zapanta L., Tien M., Aust S. D. Role of calcium in maintaining the heme environment of manganese peroxidase // Biochemistry. 1997. Vol. 36. P. 3654 3662.
  17. Banci L., Bartalesi I., Ciofi -baffoni S., Tien M. Ufolding and pH studies on manganese peroxidase: Role of heme and calcium on secondary structure stability // Biopolymers (Biospectroscopy). 2003. Vol. 72. P. 38–47.
  18. Rodriguez-Couto S., Herrera L. T. Inhibitors of Laccases: A Review // Curr. Enzyme Inhibit. 2006. Vol. 2. P. 343–352.
  19. Gasser C. A., Ammann E. M., Schaffer A., Shahgaldian P., Corvini P. F. X. Production of superparamagnetic nanobiocatalysts for green chemistry applications // Appl. Microbiol. Biotechnol. 2016. Vol. 100. P. 7281–7296.
  20. Vrsanska M., Voberkova S., Lange V., Moulick A., Adam V., Kopel P. Induction of laccase, lignin peroxidase and manganese peroxidase activities in white-rot fungi using copper complexes // Molecules. 2016. Vol. 21. P. 1553–1568.
  21. Baldrian P. Interactions of heavy metals with white-rot
  22. Giardina P., Faraco V., Pezzella C., Piscitelli A., Vanhulle S., Sannia G. Laccases: A never-ending story // Cell. Mol. Life Sci. 2009. Vol. 67. P. 369–385.
  23. Sadhasivam S., Savitha S., Swaminathan K., Lin F. H. Production, purifi cation and characterization of midredox potential laccase from a newly isolated Trichoderma harzianum Wl1 // Process Biochem. 2008. Vol. 43. P. 736-–742.
  24. Shah V., Dobiasova P., Baldrian P., Nerud F., Kumar A., Seal S. Infl uence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor // J. Hazard. Mater. 2010. Vol. 178. P. 1141–1145.
  25. Plackova M., Svobodova K., Cajthaml T. Laccase activity profi ling and gene expression in PCB-degrading cultures of Trametes versicolor // Intern. Biodeterior. Biodegrad. 2012. Vol. 71. P. 22–28.
  26. Baldrian P., Gabriel J. Copper and cadmium increase laccase activity in Pleurotus ostreatus // FEMS Microbiol. Lett. 2002. Vol. 206. P. 69–74.
  27. Galhaup C., Wagner H., Hinterstoisser B., Haltrich D. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens // Enzyme Microb. Technol. 2002. Vol. 30. P. 529–536.
  28. Kostadinova N., Krumova E., Boteva R., Abrashev R., Miteva-Staleva J., Spassova B., Angelova M. Effect of copper ions on the ligninolytic enzyme complex and the antioxidant enzyme activity in the white-rot fungus Trametes trogii 46 // Plant Biosystems. 2018. Vol. 152. P. 1128–1133. https://doi.org/10.1080/11263504.2017.1 418450
  29. Asgher M. Characterization of a novel manganese peroxidase purifi ed from solid state culture of Trametes versicolor IBL-04 // Bioresources. 2011. Vol. 6. P. 4317–4330.
  30. Reddy C. A., D’Souza T. M. Physiology and peroxidases of molecular biology of the lignin Phanerochaete chrysosporium // FEMS Microbiol. Rev. 1994. Vol. 13. P. 137–152.
  31. Li D., Alic M., Brown J. A., Gold M. H. Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen // Appl. Environ. Microbiol. 1995. Vol. 61. P. 341–345.
  32. Gopinath K. P., Kathiravan M. N., Srinivasan R., Sankaranarayanan S. Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. // Mutant. Bioresource Technology. 2011. Vol. 102. P. 3687–3693.
  33. Kurade M. B., Waghmode T. B., Govindwar S. P. Preferential biodegradation of structurally dissimilar dyes from a mixture by Brevibacillus laterosprus // Journal of Hazardous Materials. 2011. Vol. 192. P. 1746–1755.
  34. Telke A. A., Kalyani D. C., Dawkar V. V., Govindwar S. P. Infl uence of organic and in organic compounds on oxidoreductive decolorization of sulphurated azo dye C. I. Reactive Orange 16 // Journal of Hazardous Materials. 2009. Vol. 172. P. 298–309.fungi // Enzyme Microb. Technol. 2003. Vol. 32. P. 78–91.
Short text (in English):
(downloads: 33)