Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Skoptsova A. A., Novichikhina N. P., Shestakov A. S., Shikhaliev K. S. Preparation of new substituted imidazolone derivatives based on 1-(2-oxo-2-phenylethylidene)pyrrolo[3,2,1-ij]quinolin-2-ones. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 1, pp. 4-10. DOI: 10.18500/1816-9775-2023-23-1-4-10, EDN: YNW

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 167)
Полный текст в формате PDF(En):
(downloads: 64)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
547.831.3+547.832.7
EDN: 
YNW

Preparation of new substituted imidazolone derivatives based on 1-(2-oxo-2-phenylethylidene)pyrrolo[3,2,1-ij]quinolin-2-ones

Autors: 
Skoptsova Anna Aleksandrovna, Voronezh State University
Novichikhina Nadezhda Pavlovna, Voronezh State University
Shestakov Alexander S., Voronezh State University
Shikhaliev Khidmet S., Voronezh State University
Abstract: 

This work demonstrates the possibility of obtaining new biologically active molecules containing a privileged imidazolone fragment by the Brønsted acid-catalyzed reaction of 1,3-dimethylurea with 1-(2-oxo-2-phenylethylidene)pyrrolo[3,2,1-ij]quinolin-2-ones. The presence of an active oxoylidene system in ones makes it possible to introduce these compounds into cyclization reactions with various binucleophilic agents. The choice of such an N,N-binucleophile as 1,3-dimethylurea allowed us to obtain a number of new 1-(oxoimidazolyl)pyrrolo[3,2,1-ij]quinolin2-ones in a process carried out at refl ux in acetonitrile and a tenfold excess of 1,3-dimethylurea via p-toluenesulfonic acid catalysis. It has been found that 1-(oxoimidazolyl)pyrrolo[3,2,1-ij]quinolin-2-ones in solution undergo keto-enol tautomerism. This is evidenced by the duplication of characteristic proton signals and the presence of the hydroxyl group proton signal in the region of 4.95 ppm in the 1 H NMR spectrum of the obtained compounds. Also, based on the experimental data, we have presented a possible reaction mechanism. It is assumed that the reaction proceeds through consistent intermolecular addition of 1,3-dimethylurea to 1-phenacylidenepyrrolo[3,2,1-ij]quinolin-2-ones with intramolecular cyclization, followed by elimination of a water molecule.

Reference: 
  1. Novichikhina N., Ilin I., Tashchilova A., Sulimov A., Kutov D., Ledenyova I., Krysin M., Shikhaliev Kh., Gantseva A., Gantseva E., Podoplelova N., Sulimov V. Synthesis, docking, and in vitro anticoagulant activity assay of hybrid derivatives of pyrrolo[3,2,1-ij]quinolin2(1h)-one as new inhibitors of factor Xa and factor Xia // Molecules. 2020. Vol. 25, № 8. P. 1889. https://doi.org/10.3390/molecules25081889
  2. 2. Medvedeva S. M., Potapov A. Y., Gribkova I. V., Katkova E. V., Sulimov V. B., Shikhaliev K. S. Synthesis, docking, and anticoagulant activity of new factor-Xa inhibitors in a series of pyrrolo[3,2,1-ij]quinoline-1, 2-Diones // Pharm. Chem. J. 2018. Vol. 51, № 11. P. 975–979. https://doi.org/10.1007/s11094-018-1726-4
  3. 3. Novichikhina N. P., Skoptsova A. A., Shestakov A. S., Potapov A. Yu., Kosheleva E. A., Kozaderov O. A., Ledenyova I. V., Podoplelova N. A., Panteleev M. A., Shikhaliev Kh. S. Synthesis and anticoagulant activity of new ethylidene and spiro derivatives of pyrrolo[3,2,1- ij]quinolin-2-ones // Russ. J. Org. Chem. 2020. Vol. 56, № 9. P. 1550–1556. https://doi.org/10.1134/S1070428020090080
  4.  Matesic L., Locke J. M., Vine K. L., Ranson M., Bremner J. B., Skropeta D. Synthesis and anti-leukaemic activity of pyrrolo[3,2,1-hi]indole-1,2-diones, pyrrolo[3,2,1-ij]quinoline-1,2-diones and other polycyclic isatin derivatives // Tetrahedron. 2012. Vol. 68, № 34. P. 6810–6819. https://doi.org/10.1016/j.tet.2012.06.049 
  5. Novichikhina N. P., Shestakov A. S., Potapov A. Yu., Kosheleva E. A., Shatalov G. V., Verezhnikov V. N., Vandyshev D. Yu., Ledeneva I. V., Shikhaliev Kh. S. Synthesis of 4H-pyrrolo[3,2,1-ij]quinoline-1,2-diones containing a piperazine fragment and study of their inhibitory properties against protein kinases // Russ. Chem. Bull. 2020. Vol. 69, № 4. P. 787–792. https://doi.org/10.1007/ s11172-020-2834-3
  6. Kartsev V., Shikhaliev Kh. S., Geronikaki A., Medvedeva S. M., Ledenyova I. V., Krysin M. Yu., Petrou A., Ciric A., Glamoclija J., Sokovic M. Appendix A. dithioloquinolinethiones as new potential multitargeted antibacterial and antifungal agents: Synthesis, biological evaluation and molecular docking studies // Eur. J. Med. Chem. 2019. Vol. 175. P. 201–214. https://doi. org/10.1016/j.ejmech.2019.04.046
  7. Носова Э. В. Биологически активные вещества гетероциклической природы : учеб. пособие. Екатеринбург : Изд-во Урал. ун-та, 2019. 144 с.
  8. Dai L., Shu P., Wang Z., Li Q., Yu Q., Shi Y., Rong L. Brønsted acid catalyzed selective cyclization reaction: An effi cient and facile synthesis of polysubstituted imidazole and pyrrole derivatives // Synthesis. 2016. Vol. 49, № 3. P. 637–646. https://doi.org/10.1055/s-0036-1588605
Received: 
06.09.2022
Accepted: 
14.10.2022
Published: 
31.03.2023
Short text (in English):
(downloads: 64)