Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Nikulin A. V., Burashnikova M. M., Vasilkova N. O., Krivenko A. P. Electrochemical synthesis of substituted 2-amino-4H-chromen-3-carbonitrides based on cross-conjugated dienone derivatives of cyclohexane and malononitrile. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2024, vol. 24, iss. 3, pp. 240-248. DOI: 10.18500/1816-9775-2024-24-3-240-248, EDN: BBSFUK

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 58)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
544.653.1:547.816
EDN: 
BBSFUK

Electrochemical synthesis of substituted 2-amino-4H-chromen-3-carbonitrides based on cross-conjugated dienone derivatives of cyclohexane and malononitrile

Autors: 
Nikulin Alexandr V., Saratov State University
Burashnikova Marina Mihaylovna, Saratov State University
Vasilkova Natalia Olegovna, Saratov State University
Krivenko Adel P., Saratov State University
Abstract: 

The relevance of research in the fi eld of chemistry of compounds of a number of 2-aminochromen(pyran)-3-carbonitrile is due to their practical signifi cance and numerous transformation possibilities. Over the past two decades, there has been a dynamic development of the electrochemical synthesis of compounds of this series, which is determined by the possibility of eliminating expensive or toxic reagents, conducting reactions at normal temperatures and pressure in electrolyzers of a fairly simple design and other advantages. Based on the effi ciency and environmental friendliness of this method, we have for the fi rst time synthesized 2-aminotetrahydro-4H-chromene-3-carbonitriles based on available cross-conjugated dienone derivatives of cyclohexane series and malononitrile under electrolysis conditions (platinum cathode, graphite anode, KBr electrolyte, 80% EtOH). The control over the course of the reaction and the electrochemical behavior of all components has been carried out using cyclic voltammetry. The analysis of the voltammograms made it possible to establish the direct activation of the methylene component at the cathode with the formation of the anion - CH(CN)2. A comparison of the electrochemical synthesis of chromencarbonitriles with the chemical one indicates a signifi cant advantage of electrosynthesis due to the exclusion of a toxic organic catalyst, reduction of reaction time with good yields of products, as well as the possibility of monitoring reactions using cyclic voltammetry, dispersion of products.

Reference: 

1. Khafagy M. M., Ashraf H. F. Abd E.-W., Eid F. A., El-Agrody A. M. Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities // Farmako. 2002. Vol. 57, № 9. P. 715–722. https://doi.org/10.1016/S0014- 827X(02)01263-6

2. Hawas U. W., Al-Omar M. A., Amr A.E.-G.E., Ham - mam A.E.-F.G. Anticancer activity of some new synthesized tetrahydroquinoline and tetrahydrochromene carbonitrile derivatives // Am. J. Appl. Sci. 2011. Vol. 8, № 10. P. 945–952. https://doi.org/10.3844/ ajassp.2011.945.952

3. Bayomi S. M., El-Kashef H. A., El-Ashmawy M. B. Synthesis and biological evaluation of new curcumin analogues as antioxidant and antitumor agents: Molecular modeling study // Med. Chem. Res. 2013. Vol. 22, № 3. P. 1147–1162. https://doi.org/10.1016/j. ejmech.2015.07.014

4. Доценко В. В., Халатян К. В., Русских А. А., Варзиева Е. А., Крамарева Д. А., Василин В. К., Аксенов Н. А., Аксенова И. В. Синтез и свойства 2-амино-4-арил-6-гексил-7-гидрокси-4h-хромен3-карбонитрилов // Журн. общ. химии. 2023. Т. 93, № 1. С. 31–42. https://doi.org/10.31857/ S0044460X23010043

5. Abdelrazek F. M., Metz P., Kataeva O., Jäger A., El-Mahrouky S. F. Synthesis of halogen derivatives of benzo[h] chromene and benzo[a]anthracene with promising antimicrobial activities // Arch. Pharm. Chem. Life Sci. 2007. Vol. 340, № 10. P. 543–548. https://doi.org/10.1016/ s0014-827x(02)01263-6

6. El-Subbagh H. I., Abu-Zaid S. M., Mahran M. A., Badria F. A., Al-Obaid A. M. Synthesis and biological evaluation of certain alpha,beta-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents // J. Med. Chem. 2000. Vol. 43, № 15. P. 2915–2921. https://doi.org/10.1021/jm000038m

7. Youssef M. S. K., Abeed A. A. O., El-Emary T. I. Synthesis and evaluation of chromene-based compounds containing pyrazole moiety as antimicrobial agents // Heterocycl. Commun. Walter de Gruyter GmbH. 2017. Vol. 23, № 1. P. 55–64. https://doi.org/10.1515/hc-2016-0136

8. Irfan A., Pannipara M., Al-Sehemi A. G., Mumtaz M. W., Assiri M. A., Chaudhry A. R., Muhammad S. Exploring the effect of electron withdrawing groups on optoelectronic properties of pyrazole derivatives as effi cient donor and acceptor materials for photovoltaic devices // Z. Phys. Chem. 2019. Vol. 233, № 11. P. 1–20. https://doi.org/10.1515/zpch-2018-1166

9. Taei M., Salavati H., Banitaba S. H., Shahidi L. A novel hydrazine electrochemical sensor based on gold nanoparticles decorated redox-active 2-amino-4Hchromene-3-carbonitrile // Sens. J. 2017. Vol. 17, № 22. P. 7325–7331. https://doi.org/10.1109/JSEN.2017.2754281

10. Litvinov Y. M., Shestopalov A. M. Convenient selective synthesis of pyrano[2,3-d]pyrimidines // Russ. Chem. Bull. 2008. Vol. 57, № 10. P. 2223–2226. https://doi. org/10.1007/s11172-008-0308-0

11. Кривенько А. П., Василькова Н. О., Никулин А. В., Сорокин В. В. Методология «зеленой» химии в синтезе замещенных 2-аминопиран(пиридин)-3- карбонитрилов // Известия вузов. Серия: Химия и химическая технология. 2022. Т. 65, № 9. С. 13–19. https://doi.org/10.6060/ivkkt.20226509.6526

12. Maleki B., Baghayeri M., Abadi S. A. J., Tayebee R., Khojastehnezhad A. Ultrasound promoted facile one pot synthesis of highly substituted pyran derivatives catalyzed by silica-coated magnetic NiFe2O4 nanoparticlesupported H14[NaP5W30O110] under mild conditions // RSC Advances. 2016. Vol. 6, № 99. P. 96644–96661. https://doi.org/10.1039/C6RA20895A

13. Moghaddas M., Davoodnia A. Atom-economy click synthesis of tetrahydrobenzo[b]pyrans using carbon-based solid acid as a novel, highly effi cient and reusable heterogeneous catalyst // Res. Chem. Intermed. 2015. Vol. 41. P. 4373–4386. https://doi.org/10.1007/s11164-014-1536-6

14. Maleki B., Ashrafi S. S. Nano α-Al2O3 supported ammonium dihydrogen phosphate (NH4H2PO4/Al2O3): Preparation, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives // RSC Adv. 2014. Vol. 4. P. 42873–42891. https://doi.org/10.1039/C4RA07813F

15. Maleki B., Eshghi H., Barghamadi M., Nasiri N., Khojastehnezhad A., Ashrafi S. S., Pourshiani O. Silicacoated magnetic NiFe2O4 nanoparticles-supported H3PW12O40; synthesis, preparation, and application as an effi cient, magnetic, green catalyst for one-pot synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives // Res. Chem. Intermed. 2016. Vol. 42.P. 3071–3093. https://doi.org/10.1007/s11164-015-2198-8

16. Maleki B., Nasiri N., Tayebee R., Khojastehnezhad A., Akhlaghi H. A. Green synthesis of tetrahydrobenzo[b] pyrans, pyrano[2,3-c]pyrazoles and spiro[indoline3,4′-pyrano[2,3-c]pyrazoles catalyzed by nano-structured diphosphate in water // RSC Adv. 2016. Vol. 6. P. 79128–79134. https://doi.org/10.1039/C6RA15800E

17. Zhou J.-F. One-step synthesis of pyridine and 4H-pyran derivatives from bisarylidenecyclohexanone and malononitrile under microwave irradiation // Synth. Com. 2003. Vol. 33, № 1. P. 99–103. https://doi.org/10.1081/ SCC-120015564

18. Makarem S., Mohammadi A. A., Fakhari A. R. A multicomponent electro-organic synthesis of 2-amino-4Hchromenes // Tetrah. Let. 2008. Vol. 49. P. 7194–7196. https://doi.org/10.1016/j.tetlet.2008.10.006

19. Upadhyay A., Singh V. K., Dubey R., Kumar N., Sharma L. K. Electrocatalytic one pot synthesis of medicinally relevant 4H-benzo[g]chromene and pyrano[2,3- g]chromene scaffold via multicomponent-domino approach // Tetrah. Let. 2017. Vol. 58. P. 4323–4327. https://doi.org/ 10.1016/j.tetlet.2017.09.048

20. Makarem S. Three-component electrosynthesis of spirooxindole-pyran derivatives through a simple and effi cient method // J. Het. Chem. 2020. Vol. 57, № 4. P. 1599–1604. https://doi.org/10.1002/jhet.3885

21. Fotouhi L., Heravi M. M., Fatehi A., Bakhtiari K. Electrogenerated base-promoted synthesis of tetrahydrobenzo[b]pyran derivatives // Tetrah. Let. 2007. Vol. 48. P. 5379–5381. https://doi.org/10.1016/j.tetlet.2007.06.035

22. Kefayati H., Valizadeh M., Islamnezhad A. Green electrosynthesis of pyrano [2,3-d] pyrimidinones at room temperature // Anal. Bioanal. Electrochem. 2014. Vol. 6, № 1. P. 80–90. eLIBRARY ID: 22044887

23. Taheri M., Mirza B., Zeeb M. Electrosynthesis of nano-sized pyran and chromene derivatives by one-pot reaction between cyclic-1,3-diketons, malononitrile/ ethyl cyanoacetate, and isatins // J. Nanostr. Chem. 2018. Vol. 8. P. 421–429. https://doi.org/10.1007/s40097-018-0282-5

24. Никулин А. В., Мещерякова А. А., Скляр А. Е., Василькова Н. О., Сорокин В. В., Кривенько А. П. Аннелирование пиримидинового, пиридинового цикла к замещенным 4Н-хроменкам // Журн орг. химии. 2021. Т. 57, № 10. С. 1466–1473. https://doi.org/10.31857/ S051474922110013X

25. Ajani O. O., Ituen R. I., Falomo A. Facile Synthesis and characterization of substituted pyrimidin-2(1H)-ones and their chalcone precursors // Pak. J. Sci. Ind. Res. 2011. Vol. 54, № 2. P. 59–67. http://dx.doi.org/10.52763/PJSIR. PHYS.SCI.54.2011.59.67

26. Das U., Doroudi A., Das S., Bandy B., Balzarini J., Clercq E. D., Dimmock J. R. E,E-2-Benzylidene6-(nitrobenzylidene)cyclohexanones: Syntheses, cytotoxicity and an examination of some of their electronic, steric, and hydrophobic properties // Bioorg. Med. Chem. 2008. Vol. 16, № 11. P. 6261–6268. https://doi.org/10.1016/j.bmc.2008.04.029

27. Karimi-Jaberi Z., Pooladian B. A facile synthesis of new 2-amino-4H-pyran-3-carbonitriles by a one-pot reaction of α,α’-bis(arylidene) cycloalkanones and malononitrile in the presence of K2CO3 // Scien. W. J. 2011. P. 1–5. https://doi.org/10.1100/2012/208796

Received: 
12.04.2024
Accepted: 
26.04.2024
Published: 
30.09.2024
Short text (in English):
(downloads: 47)