Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Markina N. E., Zakharevich A. M., Markin A. V. Electrochemical SERS study of some endogenous components of human biofl uids. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 3, pp. 292-301. DOI: 10.18500/1816-9775-2022-22-3-292-301

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 329)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
543.424.2

Electrochemical SERS study of some endogenous components of human biofl uids

Autors: 
Markina Natalia Evgenievna, Saratov State University
Zakharevich Andrey Machailovich, Saratov State University
Markin Aleksey Viktorovich, Saratov State University
Abstract: 

The work describes electrochemical (EC) protocol suitable for preparation of copper electrodes which can be used as substrates in surface-enhanced Raman spectroscopy (SERS). These SERS-active electrodes have been used for electrospectral studies based on the combination of electrochemical and SERS analysis (EC-SRS analysis). Several endogenous bodyfl uid components (urea, creatinine, uric acid, bilirubin) have been selected for the study because they can signifi cantly aff ect the SERS-based determination of other analytes in bodyfl uids (for example, drugs). The infl uence of the SERS-active electrode polarization (applied potential) and the pH level of the analyte solutions on the SERS signal and current value have been investigated. The polarization values corresponded to the maximum SERS signal are observed at negative values for all analytes (below −0.2 V vs. copper pseudo-reference electrode). The maximal SERS signal has been observed for most of the analytes in a neutral medium (at the optimum polarization value of the SERS-active electrode), and the weakest signal has been in an alkaline medium. The diminishing of EC-SERS signal at high pH values is explained by deprotonation of analyte molecules that deteriorates analyte adsorption onto the negatively polarized SERS-active electrodes. Analysis of the current-voltage curves has been used to estimate the possible infl uence of EC changes of the studied molecules on their EC-SERS signal. The results obtained in this work will be useful for the development of EC-SERS systems suitable for the determination of various endo- and exogenous compounds in human biofl uids.

Reference: 
  1. Fleischmann M., Hendra P. J., McQuillan A. J. Raman spectra of pyridine adsorbed at a silver electrode // Chem. Phys. Lett. 1974. Vol. 26. P. 163–166. https:// doi.org/10.1016/0009-2614(74)85388-1
  2. Moldovan R., Vereshchagina E., Milenko K., Iacob B. C., Bodoki A.E., Falamas A., Tosa N., Muntean C. M., Farcău C., Bodoki E. Review on combining surfaceenhanced Raman spectroscopy and electrochemistry for analytical applications // Anal. Chim. Acta. 2021. Vol. 1209. P. 339250. https://doi.org/10.1016/j. aca.2021.339250
  3. Zaleski S., Wilson A. J., Mattei M., Chen X., Goubert G., Cardinal M. F., Willets K. A., Van Duyne R. P. Investigating nanoscale electrochemistry with surface- and tip-enhanced Raman spectroscopy // Acc. Chem. Res. 2016. Vol. 49. P. 2023–2030. https://doi.org/10.1021/ acs.accounts.6b00327
  4. Sabanés N. M., Domke K. F. Raman under water – nonlinear and nearfi eld approaches for electrochemical surface science // Chem. Electro. Chem. 2017. Vol. 4, iss. 8. P. 1814–1823. https://doi.org/10.1002/celc.201700293
  5. Wain A. J., O’Connell M. A. Advances in surfaceenhanced vibrational spectroscopy at electrochemical interfaces // Adv. Phys.-X. 2017. Vol. 2, iss. 1. P. 188–209. https://doi.org/10.1080/23746149.2016. 1268931
  6. Willets K. A. Probing nanoscale interfaces with electrochemical surface-enhanced Raman scattering // Curr. Opin. Electrochem. 2019. Vol. 13. P. 18–24. https://doi. org/10.1016/j.coelec.2018.10.005 
  7. Li D., Li D. W., Fossey J. S., Long Y. T. Portable surfaceenhanced Raman scattering sensor for rapid detection of aniline and phenol derivatives by on-site electrostatic preconcentration // Anal. Chem. 2010. Vol. 82. P. 9299–9305. https://doi.org/10.1021/ac101812x
  8. Ibáñez D., González-García M. B., Hernández-Santos D., Fanjul-Bolado P. Detection of dithiocarbamate, chloronicotinyl and organophosphate pesticides by electrochemical activation of SERS features of screen-printed electrodes // Spectrochim. Acta A. 2021. Vol. 248. P. 119174. https://doi.org/10.1016/j.saa.2020.119174
  9. Markin A. V., Markina N. E., Popp J., Cialla-May D. Copper nanostructures for chemical analysis using surfaceenhanced Raman spectroscopy // Trends Anal. Chem. 2018. Vol. 108. P. 247–259. https://doi.org/10.1016/j. trac.2018.09.004
  10. Pockrand I. Raman spectroscopy of pyridine-exposed Ag, Cu and Au fi lms in UHV. A comparative study // Chem. Phys. Lett. 1982. Vol. 85. P. 37–42. https://doi. org/10.1016/0009-2614(82)83456-8
  11. Markina N. E., Ustinov S. N., Zakharevich A. M., Markin A. V. Copper nanoparticles for SERS-based determination of some cephalosporin antibiotics in spiked human urine // Anal. Chim. Acta. 2020. Vol. 1138. P. 9–17. https://doi.org/10.1016/j.aca.2020.09.016
  12. Halouzka V., Halouzkova B., Jirovsky D., Hemzal D., Ondra P., Siranidi E., Kontos A.G., Falaras P., Hrbac J. Copper nanowire coated carbon fi bers as effi cient substrates for detecting designer drugs using SERS // Talanta. 2017. Vol. 165. P. 384–390. https:// doi.org/10.1016/j.talanta.2016.12.084
  13. Markina N. E., Volkova E. K., Zakharevich A. M., Goryacheva I. Yu., Markin A. V. SERS detection of ceftriaxone and sulfadimethoxine using copper nanoparticles temporally protected by porous calcium carbonate // Microchim. Acta. 2018. Vol. 185. P. 481. https://doi. org/10.1007/s00604-018-3018-9
  14. Pothier N. J., Force R. K. Surface-enhanced Raman spectroscopy at a silver electrode as a real-time detector in fl owing streams // Appl. Spectrosc. 1992. Vol. 46, iss. 1. P. 147–151. https://doi.org/10.1366/0003702924444533
  15. Zhao L., Blackburn J., Brosseau C. L. Quantitative detection of uric acid by electrochemical-surface enhanced Raman spectroscopy using a multilayered Au/Ag substrate // Anal. Chem. 2015. Vol. 87, iss. 1. P. 441–447. https://doi.org/10.1021/ac503967s
  16. Hernandez S., Perales-Rondon J. V., Heras A., Colina A. Determination of uric acid in synthetic urine by using electrochemical surface oxidation enhanced Raman scattering // Anal. Chim. Acta. 2019. Vol. 1085. P. 61–67. https://doi.org/10.1016/j.aca.2019.07.057
  17. Huang C. Y., Hsiao H. C. Integrated EC-SERS chip with uniform nanostructured EC-SERS active working electrode for rapid detection of uric acid // Sensors. 2020. Vol. 20, iss. 24. P. 7066. https://doi.org/10.3390/ s20247066
  18. Krebs H. A. Chemical composition of blood plasma and serum // Annu. Rev. Biochem. 1950. Vol. 19. P. 409–430.
  19. Rose C., Parker A., Jefferson B., Cartmell E. The characterization of feces and urine: A review of the literature to inform advanced treatment technology // Crit. Rev. Environ. Sci. Technol. 2015. Vol. 45, iss. 17. P. 1827–1879. https://doi.org/10.1080/10643389.2014. 1000761
  20. Laufer G., Schaaf T. F., Huneke J. T. Surface enhanced Raman scattering from cyanide adsorbed on copper // J. Chem. Phys. 1980. Vol. 73. P. 2973–2976. https://doi. org/10.1063/1.440428
  21. Kudelski A., Janik-Czachor M., Bukowska J., Pisarek M., Szummer A. Effect of ageing in air on morphology and surface-enhanced Raman scattering (SERS) activity of Cu-based amorphous alloys // Mater. Sci. Eng. A. 2002. Vol. 326. P. 364–369. https://doi.org/10.1016/ S0921-5093(01)01798-1
  22. Kudelski A., Janik-Czachor M., Pisarek M., Bukowska J., Mack P., Dolata M., Szummer A. Local characterisation of inhomogeneous Cu surfaces by surface-enhanced Raman scattering // Surf. Sci. 2002. Vol. 507–510. P. 441–446. https://doi.org/10.1016/S0039-6028(02)01283-9
  23. Pothier N. J., Forcé R. K. Detection of biologically important compounds in flowing aqueous streams by surface-enhanced Raman spectroscopy at a silver electrode // Appl. Spectrosc. 1994. Vol. 48, iss. 4. P. 421–425. https://doi.org/10.1366/000370294775269009
  24. Markina N. E., Goryacheva I. Yu., Markin A. V. Sample pretreatment and SERS-based detection of ceftriaxone in urine // Anal. Bioanal. Chem. 2018. Vol. 410. P. 2221–2227. https://doi.org/10.1007/s00216-018-0888-y
  25. Markina N. E., Zakharevich A. M., Markin A. V. Determination of methotrexate in spiked human urine using SERS-active sorbent // Anal. Bioanal. Chem. 2020. Vol. 412. P. 7757–7766. https://doi.org/10.1007/s00216- 020-02932-x
  26. Gangopadhyay D., Sharma P., Singh S. K., Singh P., Tarcea N., Deckert V., Popp J., Singh R. K. Raman spectroscopic approach to monitor the in vitro cyclization of creatine → creatinine // Chem. Phys. Lett. 2015. Vol. 618. P. 225–230. https://doi.org/10.1016/j. cplett.2014.11.021
  27. Craw J. S., Greatbanks S. P., Hillier I. H., Harrison M. J., Burton N. A. Solvation and solid state effects on the structure and energetics of the tautomers of creatinine // J. Chem. Phys. 1997. Vol. 106. P. 6612–6617. https://doi.org/10.1063/1.473650
  28. Gao J., Hu Y., Li S., Zhang Y., Chen X. Tautomeric equilibrium of creatinine and creatininium cation in aqueous solutions explored by Raman spectroscopy and density functional theory calculations // Chem. Phys. 2013. Vol. 410. P. 81–89. https://doi.org/10.1016/j. chemphys.2012.11.002 
Received: 
29.03.2022
Accepted: 
09.04.2022
Published: 
30.09.2022