Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Nikiforov A. I., Chesnokov E. A., Nikiforov I. A., Popov A. G., Maslakov K. I. Eff ect of the MoO3/Al2O3 catalyst fl uorination on the propylene metathesis reaction. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2022, vol. 22, iss. 4, pp. 390-397. DOI: 10.18500/1816-9775-2022-22-4-390-397, EDN: CLUVTS

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 180)
Полный текст в формате PDF(En):
(downloads: 93)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
544.478
EDN: 
CLUVTS

Eff ect of the MoO3/Al2O3 catalyst fl uorination on the propylene metathesis reaction

Autors: 
Nikiforov Alexander I., Lomonosov Moscow State University
Chesnokov Evgenij A., Lomonosov Moscow State University
Nikiforov I. A., Saratov State University
Popov Andrey G., Saratov State University
Maslakov Konstantin I. , Lomonosov Moscow State University
Abstract: 

In the course of this work, fl uorinated catalysts MoO3 /Al2 O3 -F for the olefi ns metathesis have been synthesized. The materials have been characterized by various physicochemical methods and tested in the propylene metathesis reaction. It has been shown that the support fl uorination leads to partial replacement of surface hydroxyl groups by F, which is accompanied by an increase in the strength of both Lewis acid sites and residual bridging OH groups. Increasing the fl uorine content on γ-Al2O3 up to 3 wt. % leads to an increase in the conversion of propylene in the metathesis reaction by 1.5 times (WHSV = 1.1 h-1, Т = 100 °С, р = 9 atm.) with a selectivity of more than 95%. However, when the reaction is carried out at atmospheric pressure, fl uorinated samples show lower activity than unpromoted ones. The results of this work show that the support acidity plays an important role in propylene metathesis. The proposed method of catalyst modifi cation opens up new possibilities for improving classical metathesis catalysts.

Reference: 
  1. Mol J. C. Industrial applications of olefi n metathesis // Journal of Molecular Catalysis A: Chemical. 2004. Vol. 213, № 1. P. 39–45. https://doi.org/10.1016/j. molcata.2003.10.049
  2. Mol J. C., van Leeuwen P. W. N. M. Metathesis of alkenes // Handbook of Heterogeneous Catalysis. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2008. P. 3240– 3256. https://doi.org/10.1002/9783527610044.hetcat0164 
  3. Chakrabarti A., Wachs I. E. Molecular structure-reactivity relationships for olefi n metathesis by Al2O3-supported surface MoOx sites // ACS Catal. 2018. Vol. 8, № 2. P. 949–959. https://doi.org/10.1021/acscatal.7b03598
  4. Smith S. J., Amin S., Woodfi eld B. F., Boerio-Goates J., Campbell B. J. Phase progression of γ-Al2O3 nanoparticles synthesized in a solvent-defi cient environment // Inorg. Chem. American Chemical Society. 2013. Vol. 52, № 8. P. 4411–4423. https://doi.org/10.1021/ic302593f
  5. Belskaya O. B., Danilova I. G., Kazakov M. O., Mironenko R. M., Lavrenov A. V., Likholobov V. A. FTIR Spectroscopy of adsorbed probe molecules for analyzing the surface properties of supported Pt (Pd) catalysts // Infrared Spectroscopy : Mater. Sci. Eng. Technol. IntechOpen, 2012. https://doi.org/10.5772/36275
  6. Berteau P., Ceckiewicz S., Delmon B. Role of the acidbase properties of aluminas, modifi ed γ-alumina, and silica-alumina in 1-butanol dehydration // Appl. Catal. 1987. Vol. 31, № 2. P. 361–383. https://doi.org/10.1016/S0166-9834(00)80702-2
  7. Ballinger T. H., Yates J. T. IR Spectroscopic detection of lewis acid sites on AI2O3 using adsorbed CO. Correlation with Al-OH group removal // Langmuir. 1991. Vol. 7, № 12. P. 3041–3045. https://doi.org/10.1021/la00060a022
  8. Rodriguez L. M., Alcaraz J., Hemandez M., Dufaux M., Taârit Y. Ben, Vrinat M. Fluorinated alumina: Characterization of acid sites and relationship between acidity and activity in benzene alkylation // Appl. Catal. A Gen. 1999. Vol. 189, № 1. P. 53–61. https://doi.org/10.1016/S0926-860X(99)00251-3
  9. Кашковский В., Григорьев А. Метатезис олефинов – катализаторы, механизм, кинетика // Катализ и нефтехимия. 2006. № 14. P. 11–21.
  10. Amakawa K., Wrabetz S., Kröhnert J., Tzolova-Müller G., Schlögl R., Trunschke A. In situ generation of active sites in olefi n metathesis // J. Amer. Chem. Soc. 2012. Vol. 134, № 28. P. 11462–11473. https://doi.org/10.1021/ja3011989
  11. Baltrusaitis J., Mendoza-Sanchez B., Fernandez V., Veenstra R., Dukstiene N., Roberts A., Fairley N. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model // Appl. Surf. Sci. 2015. Vol. 326. P. 151–161. https://doi.org/10.1016/J.APSUSC.2014.11.077
  12. Nikiforov A. I., Popov A. G., Chesnokov E. A., Ivanova I. I. Promoting effect of MoO3/Al2O3 catalysts fl uorination on their reactivity in propylene metathesis // J. Catal. 2022. Vol. 415. P. 58–62. https://doi.org/10.1016/J.JCAT.2022.09.024
Received: 
13.05.2022
Accepted: 
06.06.2022
Published: 
23.12.2022
Short text (in English):
(downloads: 82)