Известия Саратовского университета. Новая серия.

Серия Химия. Биология. Экология

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Для цитирования:

Шабунина А. Ю., Волоковойнова Л. Д., Кожевников И. О., Зайцев Д. П., Терин Д. В., Савельева М. С., Русанова Т. Ю., Сердобинцев А. А., Демина П. А. Исследование влияния условий электроформования на характеристики нетканого материала на основе фторопласта Ф42Л // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2025. Т. 25, вып. 2. С. 151-162. DOI: 10.18500/1816-9775-2025-25-2-151-162, EDN: HIBFAZ

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 327)
Язык публикации: 
русский
Рубрика: 
Тип статьи: 
Научная статья
УДК: 
54.03
EDN: 
HIBFAZ

Исследование влияния условий электроформования на характеристики нетканого материала на основе фторопласта Ф42Л

Авторы: 
Шабунина Анна Юрьевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Волоковойнова Лариса Дмитриевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Кожевников Илья Олегович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Зайцев Дмитрий Павлович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Терин Денис Владимирович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Савельева Мария Сергеевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Русанова Татьяна Юрьевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Сердобинцев Алексей Александрович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Демина Полина Анатольевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Нетканые материалы, полученные методом электроформования, успешно применяются в самых различныхсферах благодаря уникальномусочетанию своихсвойств. Важно исследовать влияние параметров технологического процесса получения этих материалов на их результирующие свойства. В данной работе исследованы нетканые материалы на основе фторопласта Ф42Л, полученные при варьировании параметров процесса на установке с горизонтальным напылением и вертикально расположенным неподвижным коллектором. Изучено влияние таких параметров, как межэлектродное расстояние (при постоянном значении напряженности электрического поля) и вязкость формовочного раствора, на характеристики сформованных материалов, включая размер самого материала, диаметр его волокон, а также смачиваемость его поверхности. В ходе исследования определено, что оптимальное межэлектродное расстояние должно составлять от 15 до 25 см. При этом изменение вязкости раствора во время процесса формования не должно превышать 5–7%. Кроме того, выявлены изменения структуры макромолекул формуемого полимера, зависящие от скорости испарения растворителя в процессе вытягивания волокна. Результаты, полученные в данной работе, могут быть полезны для оптимизации технологических процессов промышленного получения нетканых полотен из фторопласта Ф42Л с заданными свойствами.

Список источников: 
  1. Batra S. K., Pourdeyhimi B. Introduction to Nonwovens Technology. Destech Publications, Inc., 2012. 366 p.
  2. Иноземцева О. А., Сальковский Ю. Е., Северюхина А. Н., Видяшева И. В., Петрова Н. В., Метвалли Х. А., Стецюра И. Ю., Горин Д. А. Электроформование функциональных материалов для биомедицины и тканевой инженерии // Успехи химии. 2015. Т. 84, № 3. С. 251-74. https://doi.org/10.1070/RCR4435?locatt=label:RUSSIAN
  3. Martínez-Hergueta F., Ridruejo A., González C., LLorca J. Ballistic performance of hybrid nonwoven/woven polyethylene fabric shields // International Journal of Impact Engineering. 2018. Vol. 111. P. 55-65. https://doi.org/10.1016/j.ijimpeng.2017.08.011
  4. Handbook of Nonwovens / ed. S. J. Russell. Woodhead Publishing, 2006. 530 p.
  5. Wendorff J. H., Agarwal S., Greiner A. Electrospinning: Materials, Processing, and Applications. Weinheim: Wiley-VCH, 2012. 241 p.
  6. Li S., Duan G., Zhang G., Yang H., Hou H., Dai Y., Sun Y., Jiang S. Electrospun nanofiber nonwovens and sponges towards practical applications of waterproofing, thermal insulation, and electromagnetic shielding/absorption // Materials Today Nano. 2024. Vol. 25. Art. 100452. https://doi.org/10.1016/j.mtnano.2024.100452
  7. Azmami O., Sajid L., Majid S., Ahmadi Z. El, Benayada A., Gmouh S. Development and application of nonwovens based on palm fiber as reinforcements of unsaturated polyester // Journal of Composite Materials. 2023. Vol. 57, № 5. P. 1035-1054. https://doi.org/10.1177/00219983221148824
  8. Gaynor J. G., Szlek D. B., Kwon S., Tiller P. S., Byington M. S., Argyropoulos D. S. Lignin use in nonwovens: A review // BioResources. 2022. Vol. 17, № 2. P. 3445-3488. https://doi.org/10.15376/biores.17.2.Gaynor
  9. Tamzid F., Sakhawat S. B., Rashid T. U. Chitosan based electrospun nanofibrous materials: A sustainable alternative for food packaging // Trends in Food Science & Technology. 2024. Vol. 151. Art. 104617. https://doi.org/10.1016/j.tifs.2024.104617
  10. Дмитриев Ю. А., Шиповская А. Б., Коссович Л. Ю. Влияние характеристик прядильного раствора и параметров электроформования на скорость образования и диаметр волокон из хитозана // Известия высших учебных заведений. Серия: Химия и химическая технология. 2011. Т. 54, № 11. С. 109-112.
  11. Jiang S., Cheong J. Y., Nam J. S., Kim I.-D., Agarwal S., Greiner A. High-density fibrous polyimide sponges with superior mechanical and thermal properties // ACS Applied Materials & Interfaces. 2020. Vol. 12, № 16. P. 19006-19014. https://doi.org/10.1021/acsami.0c02004
  12. Yao K., Song C., Fang H., Wang F., Chen L., Jiang S., Zha G., Hou H. Freezing-extraction/vacuum-drying method for robust and fatigue-resistant polyimide fibrous aerogels and their composites with enhanced fire retardancy // Engineering. 2023. Vol. 21. P. 152-161. https://doi.org/10.1016/j.eng.2021.08.024
  13. Tao D., Li X., Dong Y., Zhu Y., Yuan Y., Ni Q., Fu Y., Fu S. Super-low thermal conductivity fibrous nanocomposite membrane of hollow silica/polyacrylonitrile // Composites Science and Technology. 2020. Vol. 188. Art. 107992. https://doi.org/10.1016/j.compscitech.2020.107992
  14. Zhao J., Zhu W., Wang X., Liu L., Yu J., Ding B. Fluorine-free waterborne coating for environmentally friendly, robustly water-resistant, and highly breathable fibrous textiles // ACS Nano. 2020. Vol. 14, № 1. P. 1045-1054. https://doi.org/10.1021/acsnano.9b08595
  15. Cheng X. Q., Jiao Y., Sun Z., Yang X., Cheng Z., Bai Q., Zhang Y., Wang K., Shao L. Constructing scalable superhydrophobic membranes for ultrafast water-oil separation // ACS Nano. 2021. Vol. 15, № 2. P. 3500-3508. https://doi.org/10.1021/acsnano.1c00158
  16. Lee S., Park J., Kim M.C., Kim M., Park P., Yoon I.-J., Nah J. Polyvinylidene fluoride core-shell nanofiber membranes with highly conductive shells for electromagnetic interference shielding // ACS Applied Materials & Interfaces. 2021. Vol. 13, № 21. P. 25428-25437. https://doi.org/10.1021/acsami.1c06230
  17. Yue Y., Gong X., Jiao W., Li Y., Yin X., Si Y., Yu J., Ding B. In situ electrospinning of thymol-loaded polyurethane fibrous membranes for waterproof, breathable, and antibacterial wound dressing application // Journal of Colloid and Interface Science. 2021. Vol. 592. P. 310-318. https://doi.org/10.1016/j.jcis.2021.02.048
  18. Liang Y., Ju J., Deng N., Zhou X., Yan J., Kang W., Cheng B. Super-hydrophobic self-cleaning bead-like SiO2@PTFE nanofiber membranes for waterproof-breathable applications // Applied Surface Science. 2018. Vol. 442. P. 54-64. https://doi.org/10.1016/j.apsusc.2018.02.126
  19. Drobny J. G. Fluoroplastics. iSmithers Rapra Publ., 2005. 192 p. (Rapra Technology Limited).
  20. Drobny J. G., Ebnesajjad S. Technology of Fluoropolymers: A Concise Handbook. CRC Press, 2023. 348 p.
  21. Ohkura M., Morizawa Y. Chapter 4: Fluoroplastics and fluoroelastomers - basic chemistry and high-performance applications // Fluorinated Polymers / eds. B. Ameduri, H. Sawada. 2016. Vol. 2. P. 80-109 (Polymer Chemistry Series). https://doi.org/10.1039/9781782629368-00080
  22. Kovalenko M. V., Protesescu L., Bodnarchuk M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals // Science. 2017. Vol. 358, № 6364. P. 745-750. https://doi.org/10.1126/science.aam7093
  23. Kostopoulou A., Brintakis K., Nasikas N. K., Stratakis E. Perovskite nanocrystals for energy conversion and storage // Nanophotonics. 2019. Vol. 8, № 10. P. 1607-1640. https://doi.org/10.1515/nanoph-2019-0119
  24. Wang S., Yousefi Amin A.A., Wu L., Cao M., Zhang Q., Ameri T. Perovskite nanocrystals: Synthesis, stability, and optoelectronic applications // Small Structures. 2021. Vol. 2, № 3. Art. 2000124. https://doi.org/10.1002/sstr.202000124
  25. Li Q., Zhao Y., Guo J., Zhou Q., Chen Q., Wang J. On-surface synthesis: A promising strategy toward the encapsulation of air unstable ultra-thin 2D materials // Nanoscale. 2018. Vol. 10, № 8. P. 3799-3804. https://doi.org/10.1039/C7NR09178H
  26. Fedorov P. P., Semashko V. V., Korableva S. L. Lithium rare-earth fluorides as photonic materials: 1. Physicochemical characterization // Inorganic Materials. 2022. Vol. 58, № 3. P. 223-245. https://doi.org/10.1134/S0020168522030049
  27. Ковыршина А. А., Цюпка Д. В., Попова Н. Р., Горячева И. Ю., Горячева О. А. Модификация наночастиц оксида церия полимерными материалами // Известия Саратовского университета. Новая серия. Серия: Физика. 2024. Т. 24, вып. 3. С. 281-289. https://doi.org/10.18500/1817-3020-2024-24-3-281-289, EDN: WLYPMD
  28. Jacobs V., Anandjiwala R. D., Maaza M. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers // Journal of Applied Polymer Science. 2010. Vol. 115, № 5. P. 3130-3136. https://doi.org/10.1002/app.31396
  29. Thompson C. J., Chase G. G., Yarin A. L., Reneker D. H. Effects of parameters on nanofiber diameter determined from electrospinning model // Polymer. 2007. Vol. 48, № 23. P. 6913-6922. https://doi.org/10.1016/j.polymer.2007.09.017
  30. Anon Image Processing and Analysis in Java. URL: https://imagej.net/ij/index.html (дата обращения: 26.05.2024).
  31. Wang Z., Cui Y., Wang J., Yang X., Wu Y., Wang K., Gao X., Li D., Li Y., Zheng X.-L., Zhu Y., Kong D., Zhao Q. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration // Biomaterials. 2014. Vol. 35, № 22. P. 5700-5710. https://doi.org/10.1016/j.biomaterials.2014.03.078
  32. Sedlak P., Sobola D., Gajdos A., Dallaev R., Nebojsa A., Kubersky P. Surface analyses of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte // Polymers. 2021. Vol. 13, № 16. Art. 2678. https://doi.org/10.3390/polym13162678
  33. Kmetík M., Kopal I., Král M., Dendisová M. Characterization of modified PVDF membranes using fourier transform infrared and raman microscopy and infrared nanoimaging: Challenges and advantages of individual methods // ACS Omega. 2024. Vol. 9, № 23. P. 24685-24694. https://doi.org/10.1021/acsomega.4c01197
  34. Kaspar P., Sobola D., Částková K., Dallaev R., Šťastná E., Sedlák P., Knápek A., Trčka T., Holcman V. Case study of polyvinylidene fluoride doping by carbon nanotubes // Materials. 2021. Vol. 14, № 6. Art. 1428. https://doi.org/10.3390/ma14061428
  35. Punetha D., Kumar A., Pandey S.K., Chakrabarti S. Tertiary nanocomposite-based self-powered E-skin as energy harvester and electronic nose // Journal of Materials Science: Materials in Electronics. 2024. Vol. 35, № 2. P. 160. https://doi.org/10.1007/s10854-023-11776-x
Поступила в редакцию: 
28.11.2024
Принята к публикации: 
10.12.2024
Опубликована: 
30.06.2025
Краткое содержание:
(загрузок: 190)