For citation:
Shabunina A. Y., Volokovoynova L. D., Kozhevnikov I. O., Zaitsev D. P., Terin D. V., Saveleva М. S., Rusanova T. Y., Serdobintsev A. A., Demina P. A. Influence of electrospinning conditions on the characteristics of a nonwoven material based on fl uoroplast P(VDF-TFE). Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2025, vol. 25, iss. 2, pp. 151-162. DOI: 10.18500/1816-9775-2025-25-2-151-162, EDN: HIBFAZ
Influence of electrospinning conditions on the characteristics of a nonwoven material based on fl uoroplast P(VDF-TFE)
Nonwovens produced through electrospinning technique have been successfully used in various fi elds due to their unique properties. It is essential to investigate the impact of the parameters in the manufacturing process on the resulting properties of these materials. This research focuses on nonwovens made from fl uoroplast P(VDF-TFE) using a horizontal spraying system with a vertically positioned collector. The parameters studied include the interelectrode distance, the electric fi eld strength, and the viscosity of the molding solution. The study aims to determine the optimal parameters for producing nonwovens with specifi c characteristics, such as size, fi ber diameter, and surface wettability. The results indicate that the interelectrode distance between 15 and 25 centimeters yields the best results. In this study, we have investigated the change in viscosity of the solution during the electrospinning process and have found that it should not exceed 5–7%. Additionally, we have observed changes in the structure of the polymer macromolecules, which depended on the rate of solvent evaporation during the fi ber stretching process. The results obtained in this research can be used to optimize the technological processes for industrial production of nonwoven fabrics made from fl uoroplast P(VDF-TFE) with specifi c properties.
- Batra S. K., Pourdeyhimi B. Introduction to Nonwovens Technology. Destech Publications, Inc., 2012. 366 p.
- Иноземцева О. А., Сальковский Ю. Е., Северюхина А. Н., Видяшева И. В., Петрова Н. В., Метвалли Х. А., Стецюра И. Ю., Горин Д. А. Электроформование функциональных материалов для биомедицины и тканевой инженерии // Успехи химии. 2015. Т. 84, № 3. С. 251-74. https://doi.org/10.1070/RCR4435?locatt=label:RUSSIAN
- Martínez-Hergueta F., Ridruejo A., González C., LLorca J. Ballistic performance of hybrid nonwoven/woven polyethylene fabric shields // International Journal of Impact Engineering. 2018. Vol. 111. P. 55-65. https://doi.org/10.1016/j.ijimpeng.2017.08.011
- Handbook of Nonwovens / ed. S. J. Russell. Woodhead Publishing, 2006. 530 p.
- Wendorff J. H., Agarwal S., Greiner A. Electrospinning: Materials, Processing, and Applications. Weinheim: Wiley-VCH, 2012. 241 p.
- Li S., Duan G., Zhang G., Yang H., Hou H., Dai Y., Sun Y., Jiang S. Electrospun nanofiber nonwovens and sponges towards practical applications of waterproofing, thermal insulation, and electromagnetic shielding/absorption // Materials Today Nano. 2024. Vol. 25. Art. 100452. https://doi.org/10.1016/j.mtnano.2024.100452
- Azmami O., Sajid L., Majid S., Ahmadi Z. El, Benayada A., Gmouh S. Development and application of nonwovens based on palm fiber as reinforcements of unsaturated polyester // Journal of Composite Materials. 2023. Vol. 57, № 5. P. 1035-1054. https://doi.org/10.1177/00219983221148824
- Gaynor J. G., Szlek D. B., Kwon S., Tiller P. S., Byington M. S., Argyropoulos D. S. Lignin use in nonwovens: A review // BioResources. 2022. Vol. 17, № 2. P. 3445-3488. https://doi.org/10.15376/biores.17.2.Gaynor
- Tamzid F., Sakhawat S. B., Rashid T. U. Chitosan based electrospun nanofibrous materials: A sustainable alternative for food packaging // Trends in Food Science & Technology. 2024. Vol. 151. Art. 104617. https://doi.org/10.1016/j.tifs.2024.104617
- Дмитриев Ю. А., Шиповская А. Б., Коссович Л. Ю. Влияние характеристик прядильного раствора и параметров электроформования на скорость образования и диаметр волокон из хитозана // Известия высших учебных заведений. Серия: Химия и химическая технология. 2011. Т. 54, № 11. С. 109-112.
- Jiang S., Cheong J. Y., Nam J. S., Kim I.-D., Agarwal S., Greiner A. High-density fibrous polyimide sponges with superior mechanical and thermal properties // ACS Applied Materials & Interfaces. 2020. Vol. 12, № 16. P. 19006-19014. https://doi.org/10.1021/acsami.0c02004
- Yao K., Song C., Fang H., Wang F., Chen L., Jiang S., Zha G., Hou H. Freezing-extraction/vacuum-drying method for robust and fatigue-resistant polyimide fibrous aerogels and their composites with enhanced fire retardancy // Engineering. 2023. Vol. 21. P. 152-161. https://doi.org/10.1016/j.eng.2021.08.024
- Tao D., Li X., Dong Y., Zhu Y., Yuan Y., Ni Q., Fu Y., Fu S. Super-low thermal conductivity fibrous nanocomposite membrane of hollow silica/polyacrylonitrile // Composites Science and Technology. 2020. Vol. 188. Art. 107992. https://doi.org/10.1016/j.compscitech.2020.107992
- Zhao J., Zhu W., Wang X., Liu L., Yu J., Ding B. Fluorine-free waterborne coating for environmentally friendly, robustly water-resistant, and highly breathable fibrous textiles // ACS Nano. 2020. Vol. 14, № 1. P. 1045-1054. https://doi.org/10.1021/acsnano.9b08595
- Cheng X. Q., Jiao Y., Sun Z., Yang X., Cheng Z., Bai Q., Zhang Y., Wang K., Shao L. Constructing scalable superhydrophobic membranes for ultrafast water-oil separation // ACS Nano. 2021. Vol. 15, № 2. P. 3500-3508. https://doi.org/10.1021/acsnano.1c00158
- Lee S., Park J., Kim M.C., Kim M., Park P., Yoon I.-J., Nah J. Polyvinylidene fluoride core-shell nanofiber membranes with highly conductive shells for electromagnetic interference shielding // ACS Applied Materials & Interfaces. 2021. Vol. 13, № 21. P. 25428-25437. https://doi.org/10.1021/acsami.1c06230
- Yue Y., Gong X., Jiao W., Li Y., Yin X., Si Y., Yu J., Ding B. In situ electrospinning of thymol-loaded polyurethane fibrous membranes for waterproof, breathable, and antibacterial wound dressing application // Journal of Colloid and Interface Science. 2021. Vol. 592. P. 310-318. https://doi.org/10.1016/j.jcis.2021.02.048
- Liang Y., Ju J., Deng N., Zhou X., Yan J., Kang W., Cheng B. Super-hydrophobic self-cleaning bead-like SiO2@PTFE nanofiber membranes for waterproof-breathable applications // Applied Surface Science. 2018. Vol. 442. P. 54-64. https://doi.org/10.1016/j.apsusc.2018.02.126
- Drobny J. G. Fluoroplastics. iSmithers Rapra Publ., 2005. 192 p. (Rapra Technology Limited).
- Drobny J. G., Ebnesajjad S. Technology of Fluoropolymers: A Concise Handbook. CRC Press, 2023. 348 p.
- Ohkura M., Morizawa Y. Chapter 4: Fluoroplastics and fluoroelastomers - basic chemistry and high-performance applications // Fluorinated Polymers / eds. B. Ameduri, H. Sawada. 2016. Vol. 2. P. 80-109 (Polymer Chemistry Series). https://doi.org/10.1039/9781782629368-00080
- Kovalenko M. V., Protesescu L., Bodnarchuk M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals // Science. 2017. Vol. 358, № 6364. P. 745-750. https://doi.org/10.1126/science.aam7093
- Kostopoulou A., Brintakis K., Nasikas N. K., Stratakis E. Perovskite nanocrystals for energy conversion and storage // Nanophotonics. 2019. Vol. 8, № 10. P. 1607-1640. https://doi.org/10.1515/nanoph-2019-0119
- Wang S., Yousefi Amin A.A., Wu L., Cao M., Zhang Q., Ameri T. Perovskite nanocrystals: Synthesis, stability, and optoelectronic applications // Small Structures. 2021. Vol. 2, № 3. Art. 2000124. https://doi.org/10.1002/sstr.202000124
- Li Q., Zhao Y., Guo J., Zhou Q., Chen Q., Wang J. On-surface synthesis: A promising strategy toward the encapsulation of air unstable ultra-thin 2D materials // Nanoscale. 2018. Vol. 10, № 8. P. 3799-3804. https://doi.org/10.1039/C7NR09178H
- Fedorov P. P., Semashko V. V., Korableva S. L. Lithium rare-earth fluorides as photonic materials: 1. Physicochemical characterization // Inorganic Materials. 2022. Vol. 58, № 3. P. 223-245. https://doi.org/10.1134/S0020168522030049
- Ковыршина А. А., Цюпка Д. В., Попова Н. Р., Горячева И. Ю., Горячева О. А. Модификация наночастиц оксида церия полимерными материалами // Известия Саратовского университета. Новая серия. Серия: Физика. 2024. Т. 24, вып. 3. С. 281-289. https://doi.org/10.18500/1817-3020-2024-24-3-281-289, EDN: WLYPMD
- Jacobs V., Anandjiwala R. D., Maaza M. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers // Journal of Applied Polymer Science. 2010. Vol. 115, № 5. P. 3130-3136. https://doi.org/10.1002/app.31396
- Thompson C. J., Chase G. G., Yarin A. L., Reneker D. H. Effects of parameters on nanofiber diameter determined from electrospinning model // Polymer. 2007. Vol. 48, № 23. P. 6913-6922. https://doi.org/10.1016/j.polymer.2007.09.017
- Anon Image Processing and Analysis in Java. URL: https://imagej.net/ij/index.html (дата обращения: 26.05.2024).
- Wang Z., Cui Y., Wang J., Yang X., Wu Y., Wang K., Gao X., Li D., Li Y., Zheng X.-L., Zhu Y., Kong D., Zhao Q. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration // Biomaterials. 2014. Vol. 35, № 22. P. 5700-5710. https://doi.org/10.1016/j.biomaterials.2014.03.078
- Sedlak P., Sobola D., Gajdos A., Dallaev R., Nebojsa A., Kubersky P. Surface analyses of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte // Polymers. 2021. Vol. 13, № 16. Art. 2678. https://doi.org/10.3390/polym13162678
- Kmetík M., Kopal I., Král M., Dendisová M. Characterization of modified PVDF membranes using fourier transform infrared and raman microscopy and infrared nanoimaging: Challenges and advantages of individual methods // ACS Omega. 2024. Vol. 9, № 23. P. 24685-24694. https://doi.org/10.1021/acsomega.4c01197
- Kaspar P., Sobola D., Částková K., Dallaev R., Šťastná E., Sedlák P., Knápek A., Trčka T., Holcman V. Case study of polyvinylidene fluoride doping by carbon nanotubes // Materials. 2021. Vol. 14, № 6. Art. 1428. https://doi.org/10.3390/ma14061428
- Punetha D., Kumar A., Pandey S.K., Chakrabarti S. Tertiary nanocomposite-based self-powered E-skin as energy harvester and electronic nose // Journal of Materials Science: Materials in Electronics. 2024. Vol. 35, № 2. P. 160. https://doi.org/10.1007/s10854-023-11776-x