Известия Саратовского университета. Новая серия.

Серия Химия. Биология. Экология

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Для цитирования:

Байбурдов Т. А., Шмаков С. Л. Регулирование физико-химических свойств акриловых сополимеров привитой полимеризацией на целлюлозу и крахмал // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2020. Т. 20, вып. 2. С. 178-188. DOI: 10.18500/1816-9775-2020-20-2-178-188

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 87)
Язык публикации: 
русский
Рубрика: 
Тип статьи: 
Научная статья
УДК: 
66.095.26–922.3:[(678.046.54+678.552):(678.744.322+678.745.842)]”2010/2019”

Регулирование физико-химических свойств акриловых сополимеров привитой полимеризацией на целлюлозу и крахмал

Авторы: 
Байбурдов Тельман Андреевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Шмаков Сергей Львович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Проведен поиск и анализ научной литературы на английском языке за 2010–2019 гг., посвященной привитой полимеризации акриловых мономеров (на примере акриловой кислоты и акриламида) на целлюлозу и крахмал в целях получения новых материалов с ценными свойствами. Установлено, что для прививки на целлюлозу и крахмал используется радикальная сополимеризация, в которой инициатором является персульфат калия или аммония, нитрат церия–аммония, реактив Фентона, использовались также ультразвук, микроволны и УФ-излучение. Для получения геля использовали сшивающий агент – N,N’- метиленбисакриламид. В качестве субстрата применялось разнообразное целлюлозное сырье (в том числе нанофибриллы и нановискеры), крахмал из разных растений, для функционализации вносились добавки. Оценена перспективность применения продуктов привитой сополимеризации в качестве сорбентов (в том числе ионов тяжелых металлов), водопоглотителей и флокулянтов.

Список источников: 

1. Tizzotti M., Charlot A., Fleury E., Stenzel M., Bernard J. Modification of Polysaccharides Through Controlled/ Living Radical Polymerization Grafting–Towards the Generation of High Performance Hybrids // Macromol. Rapid Commun. 2010. Vol. 31. P. 1751–1772.
2. Wu F., Zhang Y., Liu L., Yao J. Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-coacrylamide) superabsorbent composite based on flax yarn waste // Carbohydrate Polymers. 2012. Vol. 87. P. 2519–2525.
3. Mahfoudhi N., Boufi S. Poly(acrylic acid-co-acrylamide)/ cellulose nanofi brils nanocomposite hydrogels: effects of CNFs content on the hydrogel properties // Cellulose. 2016. Vol. 23, № 6. P. 3691–3701.
4. Dai H., Huang H. Synthesis, characterization and properties of pineapple peel cellulose-g-acrylic acid hydrogel loaded with kaolin and sepia ink // Cellulose. 2017. Vol. 24, № 1. P. 69–84.
5. Wichaita W., Samart C., Yoosuk B., Kongparakul S. Cellulose Graft Poly(acrylic acid) and Polyacrylamide: Grafting Effi ciency and Heavy Metal Adsorption Performance // Macromol. Symp. 2015. Vol. 354. P. 84–90.
6. Essawy H. A., Mohamed M. F., Ammar N. S., Ibrahim H. S. The promise of a specially-designed graft copolymer of acrylic acid onto cellulose as selective sorbent for heavy metal ions // International Journal of Biological Macromolecules. 2017. Vol. 103. P. 261–267.
7. Ghazy M. B. M., El-Hai F. A., MohamedM. F., Essawy H. A. Multifunctional Semi-interpenetrating Superabsorbents from Graft Polymerization of Acrylic Acid on Cellulose in Presence of Fulvic Acid as Potential Slow Release Devices of Soil Nutrients // Journal of Advances in Chemistry. 2016. Vol. 12, № 2. P. 4045–4056.
8. Ye D., Yang J. Ion-responsive liquid crystals of cellulose nanowhiskers grafted with acrylamide // Carbohydrate Polymers. 2015. Vol. 134. P. 458–466.
9. Sanaeishoar H., Sabbaghan M., Argyropoulos D. S. Ultrasound Assisted Polyacrylamide Grafting on NanoFibrillated Cellulose // Carbohydrate Polymers. 2018. Vol. 181. P. 1071–1077.
10. Yang B., Hua W.-Q., Li L., Zhou Z.-H., Xu L., Bian F.-G., Ji X., Zhong G.-J., Li Z.-M. Robust hydrogel of regenerated cellulose by chemical crosslinking coupled with polyacrylamide network // J. Appl. Polym. Sci. 2019. Vol. 136. P. 47811.
11. Li B., Zhang Y., Wu C., Guo B., Luo Z. Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly(acrylic acid) // Carbohydrate Polymers. 2018. Vol. 198. P. 1–8.
12. Bai C., Huang X., Xie F., Xiong X. Microcrystalline cellulose surface-modifi ed with acrylamide for reinforcement of hydrogels // ACS Sustainable Chem. Eng. 2018. Vol. 6, № 9. P. 12320–12327
13. Liu T., Xue F., Ding E. Cellulose nanocrystals grafted with polyacrylamide assisted by macromolecular RAFT agents // Cellulose. 2016. Vol. 23, № 6. P. 3717–3735.
14. Liu T., Ding E., Xue F. Polyacrylamide and poly(N,Ndimethylacrylamide) grafted cellulose nanocrystals as effi cient fl occulants for kaolin suspension // International Journal of Biological Macromolecules. 2017. Vol. 103. P. 1107–1112.
15. Zheng Y., Hua S., Wang A. Adsorption behavior of Cu2+ from aqueous solutions onto starch-g-poly(acrylic acid)/sodium humate hydrogels // Desalination. 2010. Vol. 263. P. 170–175.
16. Lu Q., Gao P., Zhi H., Zhao H., Yang Y., Sun B. Preparation of Cu(II) ions adsorbent from acrylic acid-grafted corn starch in aqueous solutions // Starch/Starke. 2013. Vol. 65. P. 417–424.
17. Ma D., Zhu B., Cao B., Wang J., Zhang J. The Microstructure and Swelling Properties of Poly Acrylic Acid-Acrylamide Grafted Starch Hydrogels // Journal of Macromolecular Science, Part B. Physics. 2016. Vol. 55, № 11. P. 1124–1133.
18. Tung N. T., Khoi N. V. Kinetics and mechanism of graft polymerization of acrylic acid onto starch initiated with ceric ammonium nitrate // J. Chem. 2010. Vol. 48, № 5. P. 621–626.
19. Gautam J., Pal M. K., Singh B., Bhatnagar U. Thermal and electrical properties of acrylic acid grafted onto starch by ceric ammonium nitrate and potassium permanganate initiator // Int. J. Plast. Technol. 2011. Vol. 15, № 2. P. 188–198.
20. Witono J. R., Noordergraaf I. W., Heeres H. J., Janssen L. P. B. M. Graft copolymerization of acrylic acid to cassava starch – Evaluation of the infl uences of process parameters by an experimental design method // Carbohydrate Polymers. 2012. Vol. 90. P. 1522–1529.
21. Witono J. R., Marsman J. H., Noordergraaf I. W., Heeres H. J., Janssen L. P. B. M. Improved homopolymer separation to enable the application of 1H NMR and HPLC for the determination of the reaction parameters of the graft copolymerization of acrylic acid onto starch // Carbohydrate Research. 2013. Vol. 370. P. 38–45.
22. Witono J. R., Noordergraaf I. W., Heeres H. J., Janssen L.P.B.M. Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid // Carbohydrate Polymers. 2014. Vol. 103. P. 325–332.
23. Edeleva M., Grekova A., Khlestkin V. One-Pot Synthesis of Gelatinized Maize Starch-Graft-Polyacrylic Acid Films // Advanced Materials Research. 2014. Vol. 1040. P. 331–336.
24. Zhu Z., Zhang L., Feng X. Introduction of 3-(trimethylammonium chloride)-2-hydroxypropyls onto starch chains for improving the grafting effi ciency and sizing property of starch-g-poly(acrylic acid) // Starch/Starke. 2016. Vol. 67. P. 1–11.
25. Jyothi A. N., Sreekumar J., Moorthy S. N., Sajeev M. S. Response surface methodology for the optimization and characterization of cassava starch-g-poly(acrylamide) // Starch/Starke. 2010. Vol. 62. P. 18–27.
26. Parvathy P. C., Jyothi A. N. Synthesis, characterization and swelling behavior of superabsorbent polymers from cassava starch-g-poly(acrylamide) // Starch/Starke. 2011. Vol. 64. P. 207–218.
27. Parvathy P. C., Jyothi A. N. Water sorption kinetics of superabsorbent hydrogels of saponifi ed cassava starchgraft-poly(acrylamide) // Starch/Starke. 2012. Vol. 64, № 10. P. 803–812.
28. Lele V. Morphological study of graft copolymers of maize starch with Acrylamide and Methacrylamide // International Journal of Current Research. 2015. Vol. 7, № 9. P. 19991–19994.
29. Li S., Zheng L., Wang Y., Han X., Sun W., Yue Y., Li D., Yang J., Zou Y. Polyacrylamide-grafted legume starch for wastewater treatment: synthesis and performance comparison // Polym. Bull. 2017. Vol. 74, № 11. P. 4371– 4392. 30. Mishra S., Mukul A., Sen G., Jha U. Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as fl occulant for water treatment // International Journal of Biological Macromolecules. 2011. Vol. 48. P. 106–111.
31. Nakason C., Wohmang T., Kaesaman A., Kiatkamjornwong S. Preparation of cassava starch-graft-polyacrylamide superabsorbents and associated composites by reactive blending // Carbohydrate Polymers. 2010. Vol. 81. P. 348–357.
32. Zhang M., Lan G., Qiu H., Zhang T., Li W., Hu X. Preparation of ion exchange resin using soluble starch and acrylamide by graft polymerization and hydrolysis // Environmental Science and Pollution Research. 2019. Vol. 26, № 4. P. 3803–3813.