Для цитирования:
Новокупцев Н. В. Оптимизация условий культивирования Azotobacter vinelandii Д-08 для увеличения выхода экзополисахарида // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2016. Т. 16, вып. 2. С. 164-168. DOI: 10.18500/1816-9775-2016-16-2-164-168
Оптимизация условий культивирования Azotobacter vinelandii Д-08 для увеличения выхода экзополисахарида
В исследовании проведена оптимизация условий культивирования Azotobacter vinelandii Д-08 на питательных средах с различным содержанием мелассы – 20, 30, 40 и 50% (по массе). Установлено, что максимальное накопление полисахарида наблюдается на 72-м ч роста штамма в среде с 50% содержанием мелассы, которое составило 13,78 г/л. Результаты метода гельхроматографии показали, что полученный полисахарид имеет молекулярную массу 0,93532 кДа и 312,5014 кДа. В ходе проведения ИК- спектроскопии Фурье и анализа полученных спектров идентифицирован исследуемый полисахарид, который по своим характеристическим пикам в областях 923 см?1 и 830 см?1 фуранозного кольца соответствует полисахариду левану.
1. Аркадьева З. А., Безбородов А. М., Блохина И. Н. Промышленная микробиология. М. : Высш. шк., 1989. 688 с.
2. Kumar A. S., Mody K., Jha B. Bacterial exopolysaccharides – a perception // J. of Bas. Microbiol. 2007. Vol. 47, iss. 2. P. 103–117.
3. Freitas F., Alves V. D., Reis M. A. M. Advances in bacterial exopolysaccharides: from production to biotechnological applications // Trends in Biotechnology. 2011. Vol. 29, iss. 8. P. 388–398.
4. Nicolaus B., Kambourova M., Oner E. T. Exopolysaccharides from extremophiles: from fundamentals to biotechnology // Environmental Technology. 2010. Vol. 31, iss. 10. P. 1145–1158.
5. Revin V., Novokuptsev N., Kadimaliev D. Preparation of Biocomposites using Sawdust and Lignosulfonate with a Culturе Liquid of Levan Producer Azotobacter vinelandii as a Bonding Agent // Bioresources. 2016. Vol. 11, iss. 2. P. 3244–3258.
6. Ревин В. В., Шутова В. В., Новокупцев Н. В. Биокомпозиционные материалы на основе ультрадисперсных частиц древесины и левана, полученного путем микробного биосинтеза Azotobacter vinelandii Д-08 // Фундаментальные исследования. Технические науки. 2016. № 1. С. 53–57.
7. Ревин В. В., Шутова В. В., Кадималиев Д. А., Атыкян Н. А., Ведяшкина Т. А., Ивинкина Т. И. Теоретические и прикладные основы получения биокомпозиционных материалов с помощью биологических связующих. Саранск : Изд-во Мордов. ун-та, 2010. 280 с.
8. Шутова В. В., Ведяшкина Т. А., Ивинкина Т. И., Ревин В. В. Получение клеевых составов и материалов при использовании культуральной жидкости полисахаридсинтезирующих микроорганизмов // Изв. вузов. Сер. Строительство. 2010. № 3. С. 31–36.
9. Лияськина Е. В., Ревин В. В., Грошев В. М., Лияськин Ю. К. Биотехнология бактериальных полисахаридов : учеб. пособие. Саранск : Изд-во Мордов. гос. ун-та, 2010. 120 с.
10. Четвериков С. П., Логинов Я. О., Пигильцова С. А., Черкасоа Д. В., Логинов О. А. Оптимизация условий культивирования и биосинтеза экзополисахарида Azotobacter vinelandii // Башкир. хим. журн. 2006. Т. 13, № 5. С. 8–11.
11. Пат. 2073712 Российская Феде рация, C12N1/20, C12P19/04, C12N1/20, C12R1:065 Штамм бактерий Azotobacter vinelandii (Limpan) – продуцент экзополисахарида / Краснопевцева Н. В., Чернягин А. В., Яроцкий С. В.; заявитель и патентообладатель Товарищество с ограниченной ответственностью «ИТИН» РФ. – 93000503/13 ; заявл. 05.01.2003 ; опубл. 20.02.1997, Бюл. № 23. 3 с.
12. Sutherland I. W. Biotechnology of microbial exopolysaccharides // Cambridge Studies in Biotechnology 9. Cambridge : Cambridge University Press, 1990. 163 p.
13. Базарнова Н. Г., Карпова Е. В., Катраков И. Б. Маркин В. И., Микушина И. В., Ольхов Ю. А., Худенко С. В. Методы исследования древесины и ее производных : учеб. пособие. Барнаул : Изд-во Алт. гос. ун-та, 2002. 160 с.
14. Смит А. Прикладная ИК-спектроскопия / пер. с англ. М. : Мир, 1982. 328 с.
15. Yanase H., Maeda M., Hagiwara E., Yagi H., Taniguchi K., Okamoto K. Identi? cation of functionally important amino acid residues in Zymomonas mobilis levansucrase // J. of Biochemistry. 2002. Vol. 132, iss. 4. P. 565–572.
16. Larsen B., Haug A. Biosynthesis of alginate. Part I. Composition and structure of alginate produced of Azotobacter vinelandii (Lipman) // Carbohydrate Research. 1971. Vol. 17, iss. 2. P. 287–296.
17. Barone J. R., Medynets M. Thermally processed levan polymers // Carbohydrate Polymers. 2007. Vol. 69. P. 554–561.
18. Mahmood S. J., Siddique A. Ionic studies of sodium alginate isolated from Sargassum terrarium (brown algea) karachi coast with 2,1-electrolyt // J. of Saudi Chem. Soc. 2010. Vol. 14. P. 117–123.
19. Srikanth R., Sundhar Reddy C., Siddartha G., Ramaiah M. J., Uppuluri K. B. Review on production, characterization and applications of microbial levan // Carbohydrate Polymers. 2015. Vol. 120. P. 102–114.
20. Grube M., Bekers M., Upite D., Kaminska E. IRspectroscopic studies of Zymomonas mobilis and levan precipitate // Vibrat. Spectroscopy. 2002. Vol. 28, iss. 2. P. 277-285.
21. Abdel-Fattash A. F., Mahmoud D. A., Esawy M. A. Production of levansucrase from Bacillus subtilis NRS 33a and enzyme synthesis of levan and fructooligosaccharides // Current Mirobiology. 2005. Vol. 51, iss. 6. P. 402–407.