Известия Саратовского университета. Новая серия.

Серия Химия. Биология. Экология

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Для цитирования:

Тучина Е. С. Некоторые аспекты антимикробного фотодинамического воздействия // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2022. Т. 22, вып. 1. С. 33-46. DOI: 10.18500/1816-9775-2022-22-1-33-46

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 54)
Язык публикации: 
русский
Рубрика: 
Тип статьи: 
Научная статья
УДК: 
577.344.3:579.61:666.1.056

Некоторые аспекты антимикробного фотодинамического воздействия

Авторы: 
Тучина Елена Святославна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Антимикробная фототерапия является альтернативным методом борьбы с клинически значимыми микроорганизмами, ассоциированными с поражениями кожи, слизистых оболочек ротовой полости, дыхательного, желудочно-кишечного и урогенитального трактов. Метод использует нетоксичные красители, называемые фотосенсибилизаторами, молекулы которых могут возбуждаться безвредным видимым светом с образованием активных форм кислорода. Многочисленные исследования метода in vitro и in vivo продемонстрировали уничтожение микроорганизмов или существенное сокращение их численности. Активные формы кислорода продуцируются при фотоактивации и атакуют такие мишени, как белки, липиды и нуклеиновые кислоты, присутствующие внутри микробных клеток. Обзор суммирует современные данные по антимикробному фотовоздействию.

Список источников: 
  1. Liu Y., Qin R., Zaat S. A. J., Breukink E., Heger M. Antibacterial photodynamic therapy: overview of a promising approach to fi ght antibiotic-resistant bacterial infections // J. of Clinical and Translational Research. 2015. Vol. 1. P. 140–167. https://dx.doi.org/10.18053/jctres.201503.002
  2. Mahmoudi H., Bahador A., Pourhajibagher M., Alikhani M. Y. Antimicrobial photodynamic therapy: An effective alternative approach to control bacterial infections // J. Lasers Med. Sci. 2018. Vol. 9. P. 154–162. https://doi.org/10.15171/jlms.2018.29
  3. Muehler D., Rupp C. M., Keceli S., Brochhausen C., Siegmund H., Maisch T., Hiller K.-A., Buchalla W., Cieplik F. Insights into mechanisms of antimicrobial photodynamic action toward biofi lms using phenalen-1- one derivatives as photosensitizers // Front. Microbiol. 2020. Vol. 11. P. 589364-73. https://doi.org/10.3389/fmicb.2020.589364
  4. Dai T., Huang Y. Y., Hamblin M. R. Photodynamic therapy for localized infections – state of the art // Photodiagnosis Photodyn. Ther. 2009. Vol. 6. P. 170–188. https://doi.org/10.1016/j.pdpdt.2009.10.008
  5. Rosa L. P., Silva F. C. da. Antimicrobial photodynamic therapy: a new therapeutic option to combat infections // J. Med. Microb. Diagn. 2014. Vol. 3 P. 100158-64. https://doi.org/10.4172/2161-0703.1000158
  6. Hamblin M. R. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes // Curr. Opin. Microbiol. 2016. Vol. 33. P. 67–73. https://doi.org/10.1016/j.mib.2016.06.008
  7. Cieplik F., Deng D., Crielaard W., Buchalla W., Hellwig E., Al-Ahmad A., Maisch T. Antimicrobial photodynamic therapy – what we know and what we don’t // Critical Reviews in Microbiology. 2018. Vol. 44. P. 571–589. https://doi.org/10.1080/1040841X.2018.1467876
  8. Hu X., Huang Y. Y., Wang Y., Wang X., Hamblin M. R. Antimicrobial photodynamic therapy to control clinically relevant biofi lm infections // Frontiers in Microbiology. 2018. Vol. 9. P. 1299–1307. https://doi.org/10.3389/ fmicb. 2018.01299
  9. Feng Y., Liu L., Zhang J., Aslan H., Dong M. Photoactive antimicrobial nanomaterials // J. Mater. Chem. B. 2017. Vol. 5. P. 8631–8652. https://doi.org/10.1039/C7TB01860F
  10. Reginato E., Wolf P., Hamblin M. R. Immune response after photodynamic therapy increases anti-cancer and anti-bacterial effects // World J. Immunol. 2014. Vol. 4. P. 1–11. https://doi.org/10.5411/wji.v4.i1
  11. Gwynne P. J., Gallagher M. P. Light as a Broad-Spectrum Antimicrobial // Front. Microbiol. 2018. Vol. 9. P. 119–128. https://doi.org/10.3389/fmicb.2018.00119
  12. Nakonechny F., Nisnevitch M. Chapter 7 in Microorganisms // Aspects of Photodynamic Inactivation of Bacteria. IntechOpen, 2019. P. 131–144. http://dx.doi.org/10.5772/intechopen.89523
  13. Rezaie A., Leite G. G. S., Melmed G. Y., Mathur R., Villanueva-Millan M. J., Parodi G. Ultraviolet A light effectively reduces bacteria and viruses including coronavirus // PLoS ONE. 2020. Vol. 15. P. 199–207. https://doi.org/10.1371/journal.pone.0236199
  14. Dias L. D., Bagnato V. S. An update on clinical photodynamic therapy for fighting respiratory tract infections: a promising tool against COVID-19 and its co-infections // Laser Phys. Lett. 2020. Vol. 17. P. 083001. https://doi.org/10.1088/1612-202X/ab95a9
  15. Rupel K., Zupin L., Ottaviani G., Bertani I., Martinelli V., Porrelli D., Vodret S., Vuerich R., Passos da Silva D., Bussani R., Crovella S., Parsek M., Venturi V., Di Lenarda R., Biasotto M., Zacchigna S. Blue laser light inhibits biofi lm formation in vitro and in vivo by inducing oxidative stress // Biofilms and Microbiomes. 2019. Vol. 5. P. 29–40. https://doi.org/10.1038/s41522-019-0102-9
  16. Mofi di A. A., Rochelle P. A., Chou C. I., Mehta H. M., Verne L., Linden K. G. Bacterial Survival After Ultraviolet Light Disinfection: Resistance, Regrowth and Repair // Am. Water Work. Assoc. Annu. Conf. Exhib. 2002. Vol. 1. P. 1–11.
  17. Welch D., Buonanno M., Veljko G., Shuryak I., Crickmore C., Bigelow A. W., Randers-Pehrson G., Johnson G. W., Brenner D. J. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases // Sci. Rep. 2018. Vol. 8. P. 2752. https://doi.org/10.1038/s41598-018-21058-w
  18. Cheng Y., Chen H., Sánchez Basurto L. A., Protasenko V. V., Bharadwaj S., Islam M., Moraru C. I. Inactivation of Listeria and E. coli by Deep-UV LED: Effect of substrate conditions on inactivation kinetics // Sci. Rep. 2020. Vol. 10. P. 3411. https://doi.org/10.1038/s41598-020-60459-8
  19. Monsalves M. T., Ollivet-Besson G. P., Amenabar M. J., Blamey J. M. Isolation of a psychrotolerant and UVC-resistant bacterium from elephant island, antarctica with a highly thermoactive and thermostable catalase // Microorganisms. 2020. Vol. 9. P. 95.
  20. Biasin M., Bianco A., Pareschi G., Cavalleri A., Cavatorta C., Fenizia C., Galli P., Lessio L., Lualdi M., Tombetti E., Ambrosi A., Redaelli E. M. A., Saulle I., Trabattoni D., Zanutta A., Clerici M. UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication // Sci. Rep. 2021. Vol. 11. P. 6260. https://doi.org/10.1038/s41598-021-85425-w
  21. Coohill T. P., Sagripanti J.-L. Overview of the Inactivation by 254 nm Ultraviolet Radiation of Bacteria with Particular Relevance to Biodefense // Photochemistry and Photobiology. 2008. Vol. 84. P. 1084–1090.
  22. Dai T. The antimicrobial effect of blue light: What are behind? // Virulence. 2017. Vol. 8. P. 649–652. https://doi.org/10.1080/21505594.2016.1276691
  23. Ferrer-Espada R., Liu X., Goh X. S., Dai T. Antimicrobial Blue Light Inactivation of Polymicrobial Biofilms // Frontiers in Microbiology. 2019. Vol. 10. P. 721. https://doi.org/10.3389/fmicb.2019.00721
  24. Alcántara-Díaz D., Breña-Valle M., Serment-Guerrero J. Divergent adaptation of Escherichia coli to cyclic ultraviolet light exposures // Mutagenesis. 2004. Vol. 19. P. 349–361.
  25. Maclean M., MacGregor S. J., Anderson J. G., Woolsey G. A. The role of oxygen in the visible-light inactivation of Staphylococcus aureus // J. Photochem. Photobiol. B. 2008. Vol. 92. P. 180–185.
  26. Korchenova M. V., Tuchina E. S., Shvayko V. Yu., Gulkhandanyan A. G., Zakoyan A. A., Kazaryan R. K., Gulkhandanyan G. V., Dzhagarov B. M., Tuchin V. V. Photodynamic effect of radiation with the wavelength 405 nm on the cells of microorganisms sensitised by metalloporphyrin compounds // Quantum Electron. 2016. Vol. 46. P. 521–527.
  27. Fila G., Kawiak A., Grinholc M. S. Blue light treatment of Pseudomonas aeruginosa: Strong bactericidal activity, synergism with antibiotics and inactivation of virulence factors // Virulence. 2016. Vol.1. P. 1–21. https://doi.org/10.1080/21505594.2016.1250995
  28. Gasperini A. E., Sanchez S., Doiron A. L., Lyles M., Guy G. K. Non-ionising UV light increases the optical density of hygroscopic self assembled DNA crystal films // Sci. Rep. 2017. Vol. 7. P. 1–10. https://doi.org/10.1038/s41598-017-06884-8
  29. Lamprecht-Grandío M., Cortesão M., Mirete S., de la Cámara M. B., de Figueras C. G., Pérez-Pantoja D., White J. J., Farías M.E., Rosselló-Móra R., GonzálezPastor J. E. Novel Genes Involved in Resistance to both Ultraviolet Radiation and Perchlorate from the Metagenomes of Hypersaline Environments // Front. Microbiol. 2020. Vol. 11. P. 1–13.
  30. Kvam E., Benner K. Mechanistic insights into UV-A mediated bacterial disinfection via endogenous photosensitizers // J. Photochem. Photobiol. B. 2020. Vol. 209. P. 111899. https://doi.org/10.1016/j.jphotobiol.2020.111899
  31. Mohl M., Dombovari A., Tuchina E. S., Petrov P. O., Bibikova O. A., Skovorodkin I., Popov A.P., Rautio A.-R., Sarkar A., Mikkola J.P., Huuhtanen M., Vainio S., Keiski R. L., Prilepsky A., Kukovecz A., Konya Z., Tuchin V. V., Kordas K. Titania nanofibers in gypsum composites: An antibacterial and cytotoxicology study // J. Mater. Chem. B. 2014. Vol. 2. P. 1307–1316.
  32. Rezaie A., Leite G. G. S., Melmed G.Y., Mathur R., Villanueva-Millan M.J., Parodi G., Sin J., Germano G. F., Morales W., Weitsman S., Kim S. Y., Park J. H., Sakhaine S., Pimentel M. Ultraviolet A light effectively reduces bacteria and viruses including coronavirus // PLoS ONE. 2020. Vol. 15. P. 1–10. https://doi.org/10.1371/journal.pone.0236199
  33. Tenkumo T., Ishiyama K., Prymak O., Nakamura K., Shirato M., Ogawa T., Miyashita M., Takahashi M., Epple M., Kanno T., Sasaki K. Bactericidal activity and recovery effect of hydroxyl radicals generated by ultraviolet irradiation and silver ion application on an infected titanium surface // Sci. Rep. 2020. Vol. 10. P. 8553. https://doi.org/10.1038/s41598-020-65411-4
  34. Hoenes K., Bauer R., Meurle T., Spellerberg B., Hessling M. Inactivation Effect of Violet and Blue Light on ESKAPE Pathogens and Closely Related Non-pathogenic Bacterial Species – A Promising Tool Against AntibioticSensitive and Antibiotic-Resistant Microorganisms // Front. Microbiol. 2021. Vol. 11. P. 612367. https://doi.org/10.3389/fmicb.2020.612367 
  35. Tuchin V. V., Genina E. A., Tuchina E. S., Svetlakova A. V., Svenskaya Y. I. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery // Advanced Drug Delivery Reviews. 2022. Vol. 180. P. 114037. https://doi.org/10.1016/j.addr.2021.114037
  36. Ma W., Wang T., Zang L., Jiang Z., Zhang Z., Bi L., Cao W. Bactericidal effects of hematoporphyrin monomethyl ether-mediated blue-light photodynamic therapy against Staphylococcus aureus // Photochem. Photobiol. Sci. 2019. Vol. 18. P. 92–97.
  37. Seeger M. G., Ries A. S., Gressler L. T., Botton S. A., Iglesias B. A., Cargnelutti J. F. In vitro antimicrobial photodynamic therapy using tetra-cationic porphyrins against multidrug-resistant bacteria isolated from canine otitis // Photodiagnos. Photodyn. Ther. 2020. Vol. 32. P. 101982. https://doi.org/10.1016/j.pdpdt.2020.101982
  38. Klausen M., Ucuncu M., Bradley M. Design of Photosensitizing Agents for Targeted Antimicrobial Photodynamic Therapy // Molecules. 2020. Vol. 25. P. 5239. https://doi.org/10.3390/molecules25225239
  39. Waldmanna I., Schmidb T., Prinza J., Mühleisenc B., Zbindenb R., Imhofc L., Achermanna Y. Photodynamic therapy improves skin antisepsis as a prevention strategy in arthroplasty procedures: A pilot study // Photodiagnos. Photodyn. Ther. 2020. Vol. 31. P. 101941. https://doi.org/10.1016/j.pdpdt.2020.101941
  40. Luksiene Z., Zukauskas A. Prospects of photosensitization in control of pathogenic and harmful microorganisms // J. Appl. Microbiol. 2009. Vol. 107. P. 1415–21.
  41. Hill R., Rennie M. Y., Douglas J. Using bacterial fl uorescence imaging and antimicrobial stewardship to guide wound managementpractices: A case series // Ostomy Wound Manage. 2018. Vol. 64. P. 18–29.
  42. Hurley C. M., McClusky P., Sugrue R. M., Clover J. A., Kelly J. E. Effi cacy of a bacterial fl uorescence imaging device in an outpatient wound care clinic: A pilot study // J. Wound Care. 2019. Vol. 28. P. 438–443. https://doi.org/10.12968/jowc.2019.28.7.438
  43. Rennie M. Y., Dunham D., Lindvere-Teene L., Raizman R., Hill R., Linden R. Understanding real-time fl uorescence signals from bacteria and wound tissues observed with the MolecuLight i:X™ // Diagnostics. 2019. Vol. 9. P. 1–12.
  44. Alves E., Faustino M. A. F., Neves M. G., Cunha A., Tome J., Almeida A. An insight on bacterial cellular targets of photodynamic inactivation // Future Med. Chem. 2014. Vol. 6. P. 141–164. https://doi.org/10.4155/fmc.13.211
  45. Thadani H., Deacon A., Peters T. Diagnosis and management of porphyria // Br. Med. J. 2000. Vol. 320. P. 1647-51. https://doi.org/10.1136/bmj.320.7250.1647
  46. Kępczyński M., Pandian R. P., Smith K. M., Ehrenberg B. Do liposome-binding constants of porphyrins correlate with their measured and predicted partitioning between octanol and water // J. Photochem. Photobiol. 2002. Vol. 76. P. 127–134.
  47. Almeida J., Tomé J. P., Neves M. G., Tomé A. C., Cavaleiro J. A., Cunha Â., Costa L., Faustino M. A., Almeida A. Photodynamic inactivation of multidrugresistant bacteria in hospital wastewaters: infl uence of residual antibiotics // Photochem. Photobiol. Sci. 2014. Vol. 13. P. 626–635.  
  48. Kato H., Komagoe K., Inoue T., Masuda K., Katsu T. Structure–activity relationship of porphyrin- induced photoinactivation with membrane function in bacteria and erythrocytes // Photochem. Photobiol. Sci. 2018. Vol. 17. P. 954–963. https://doi.org/10.1039/C8PP00092A
  49. Annunzio S. R. de, Costa N. C. S., Mezzina R. D., Graminha M. A. S., Fontana C. R. Chlorin, Phthalocyanine, and Porphyrin Types Derivatives in Phototreatment of Cutaneous Manifestations: A Review // Int. J. Mol. Sci. 2019. Vol. 20. P. 3861. https://doi.org/10.3390/ijms20163861
  50. Linkner R. V., Jim O. S., Haddican M., Singer G., ShimChang H. Evaluating the Effi cacy of Photodynamic Therapy with 20% Aminolevulinic Acid and Microdermabrasion as a Combination Treatment Regimen for Acne Scarring: A Split-face, Randomized, Double-blind Pilot Study // J. Clin. Aesthet. Dermatol. 2014. Vol. 7. P. 32–41.
  51. Shleeva M., Savitsky A., Kaprelyants A. Photoinactivation of mycobacteria to combat infection diseases: current state and perspectives // Applied Microbiology and Biotechnology. 2021. Vol. 105. P. 4099. https://doi.org/10.1007/s00253-021-11349-0
  52. Wang T., Wu L., Wang Y., Song J., Zhang F., Hexy X. Z. Aminolevulinate ethosome–mediated photodynamic therapy against acne: in vitro and in vivo analyses // Drug Delivery and Translational Research. 2021. Vol. 12. P. 325–332. https://doi.org/10.1007/s13346-021-00942-5
  53. Wu M.-F., Deichelbohrer M., Tschernig T., Laschke M. W., Szentmary N., Hüttenberger D., Foth H.-J., Seitz B., Bischoff M. Chlorin e6 mediated photodynamic inactivation for multidrug resistant Pseudomonas aeruginosa keratitis in mice in vivo // Sci. Rep. 2016. Vol. 7. P. 1. https://doi.org/10.1038/srep44537
  54. Petrov P. O., Tuchina E. S., Kulikova M. V., Kochubey V. I., Tuchin V. V. Comparison of the effi ciency of titanium(IV) and iron(III) oxide nanoparticles as mediators in suppression of bacterial growth by radiation of a blue (405 nm) light-emitting diode // Opt. Spectrosc. 2013. Vol. 115. P. 161–165. https://doi.org/10.1134/S0030400X13080158
  55. Barroso R. A., Navarro R., Tim C. R., de P. Ramos L., de Oliveira L.D., Araki Â. T., Fernandes K. G. C., Macedo D., Assis L. Antimicrobial photodynamic therapy against Propionibacterium acnes biofilms using hypericin (Hypericum perforatum) photosensitizer: in vitro study // Lasers Med. Sci. 2020. Vol. 36. P. 1235–1240. https://doi.org/10.1007/s10103-020-03163-3
  56. Dascalu (Rusu) L. M., Moldovan M., Prodan D., Ciotlaus I., Popescu V., Baldea I., Carpa R., Sava S., Chifor R., Badea M. E. Assessment and Characterization of Some New Photosensitizers for Antimicrobial Photodynamic Therapy (aPDT) // Materials. 2020. Vol. 13. P. 3012. https://doi.org/10.3390/ma13133012 
  57. Dharmaratne P., Wong R. C. H., Wang J., Lo P. C., Wang B., Chan B. C. L., Lau K.-M., Lau C. B. S., Fung K. P., Ip M.,  Ng D. K. P. Synthesis and In Vitro Photodynamic Activity of Cationic Boron Dipyrromethene-Based Photosensitizers Against Methicillin-Resistant Staphylococcus aureus // Biomedicines. 2020. Vol. 8. P. 140. https://doi.org/10.3390/biomedicines8060140.
  58. Palavecino C. E., Pérez C., Zuñiga T. Chapter in Photodynamic Therapy – From Basic Science to Clinical Research // Photodynamic Treatment of Staphylococcus aureus Infections. IntechOpen, 2021. P. 1–21. https://doi.org/10.5772/intechopen.95455
  59. Grinholc M., Szramka B., Kurlenda J., Graczyk A., Bielawski K. P. Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillinsusceptible Staphylococcus aureus is strain-dependent // J. of Photochem. Photobiol. B. 2007. Vol. 90. P. 57. https:// doi.org/10.1016/j.jphotobiol.2007.11.002
  60. Shabangu S. M., Babu B., Soy R. C., Oyim J., Amuhaya E., Nyokong T. Susceptibility of Staphylococcus aureus to porphyrin-silver nanoparticle mediated photodynamic antimicrobial chemotherapy // Photodiagnos. Photodyn. Ther. 2020. Vol. 30. P. 101647. https://doi.org/10.1016/j.jlumin.2020.117158
  61. Oliveira L., Tuchin V. V. The Optical Clearing Method: A New Tool for Clinical Practice and Biomedical Engineering. Basel : Springer Nature Switzerland AG, 2019. 177 p.
  62. Zhao Y., Tian Y., Cui Y., Liu W., Ma W., Jiang X. Small Molecule-Capped Gold Nanoparticles as Potent Antibacterial Agents That Target Gram-Negative Bacteria // J. Am. Chem. Soc. 2010. Vol. 132. P. 12349–12356.
  63. Tuchina E. S., Ratto F., Khlebtsov B. N., Centi S., Matteini P., Rossi F., Fusi F., Khlebtsov N. G., Pini R., Tuchin V. V. Combined near infrared photothermolysis and photodynamic therapy by association of gold nanoparticles and an organic dye // Proc. SPIE 7911: Plasmonics in Biology and Medicine. 2011. VIII. P. 79111C. https://doi.org/10.1117/12.875122
  64. Rout B., Liu C.-H., Wu W.-C. Photosensitizer in lipid nanoparticle: a nano-scaled approach to antibacterial function // Sci. Rep. 2017. Vol. 7. P. 7892. https://doi.org/10.1038/s41598-017-07444-w
  65. Su C., Huang K., Li H.-H., Lu Y.-G., Zheng D.-L. Antibacterial Properties of Functionalized Gold Nanoparticles and Their Application in Oral Biology // Journal of Nanomaterials. 2020. P. 1–13. https://doi.org/10.1155/2020/5616379
  66. Maliszewska I., Wanarska E., Thompson A. C., Samuel I. D. W., Matczyszyn K. Biogenic Gold Nanoparticles Decrease Methylene Blue Photobleaching and Enhance Antimicrobial Photodynamic Therapy // Molecules. 2021. Vol. 26. P. 623. https://doi.org/10.3390/molecules26030623
  67. Khlebtsov B. N., Tuchina E. S., Tuchin V. V., Khlebtsov N. G. Multifunctional Au nanoclusters for targeted bioimaging and enhanced photodynamic inactivation of Staphylococcus aureus // RSC Advances. 2015. Vol. 5. P. 61639–61649.
  68. Bucharskaya A., Maslyakova G., Terentyuk G., Yakunin A., Avetisyan Y., Bibikova O., Tuchina E., Khlebtsov B., Khlebtsov N., Tuchin V. Towards effective photothermal/photodynamic treatment using plasmonic gold nanoparticles (Review) // Int. J. Mol. Sci. 2016. Vol. 17. P. 1295. https://doi.org/10.3390/ijms17081295
  69. Abrahamse H., Hamblin M. R. New photosensitizers for photodynamic therapy // Biochem. J. 2016. Vol. 473. P. 347–364. https://doi.org/10.1042/BJ20150942
  70. Sarkar A., Shchukarev A., Leino A.-R., Kordas K., Mikkola J.-P., Petrov P. O., Tuchina E. S., Popov A. P., Darvin M. E., Meinke M., Lademann J., Tuchin V. V. Photocatalytic activity of TiO2 nanoparticles: Effect of thermal annealing under various gaseous atmospheres // Nanotechnology. 2012. Vol. 23. P. 1–8.
  71. Mohl M., Dombovari A., Rautio A.-R., Tuchina E. S., Petrov P. O., Bibikova O. A., Skovorodkin I., Popov A. P., Sarkar A., Mikkola J.-P., Valtanen A., Huuhtanen M., Vainio S., Keiski R. L., Prilepskyi A., Kukovecz A., Konya Z., Tuchin V. V., Kordas K. Gypsum-titania fi ber nanocomposites for indoor antimicrobial coatings // J. Mat. Chem. 2014. Vol. 2. P. 1307–1316.
  72. Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future? // Int. J. Nanomed. 2017. Vol. 12. P. 1227–1249. https://doi.org/10.2147/IJN.S121956
  73. 73. Lad V. N., Murthy Z. V. P. Advanced materials for photocatalytic applications: The challenge ahead // Handbook of Smart Photocatalytic Materials. Elsevier, 2020. P. 3–8.
  74. Tuchina E. S., Tuchin V. V. TiO2 nanoparticle enhanced photodynamic inhibition of Pathogens // Laser Phys. Lett. 2010. Vol. 7. P. 1–6. https://doi.org/10.1002/lapl.201010030
  75. Tuchina E. S., Tuchin V. V. Photodynamic/photocatalytic effects on microorganisms processed by nanodyes // Proc. SPIE 7576: Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications II. 2010. P. 75761-8.
  76. Khlebtsov B. N., Tuchina E. S., Khanadeev V. A., Panfi lova E. V., Petrov P. O., Tuchin V. V., Khlebtsov N. G. Enhanced photoinactivation of Staphylococcus aureus with nanocomposites containing plasmonic particles and hematoporphyrin // J. Biophotonics. 2013. Vol. 6. P. 338–351. https://doi.org/10.1002/jbio.201200079 
Поступила в редакцию: 
02.10.2021
Принята к публикации: 
17.10.2021
Опубликована: 
31.03.2022