Для цитирования:
Ковыршина А. А., Бакал А. А., Савельева М. С., Горячева И. Ю., Демина П. А. Исследование зависимости физико-химических свойств флуоресцентных гибридных полимерных носителей от условий гидротермального синтеза // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2024. Т. 24, вып. 1. С. 15-27. DOI: 10.18500/1816-9775-2024-24-1-15-27, EDN: NWNRES
Исследование зависимости физико-химических свойств флуоресцентных гибридных полимерных носителей от условий гидротермального синтеза
В настоящее время поиск новых видов носителей для низкомолекулярных веществ, а также разработка оптимальных методов для эффективной инкапсуляции этих веществ являются важными задачами современной химии и фармакологии. Однако в данной сфере все еще имеются ограничения, среди которых одно из наиболее существенных – это отсутствие оптимального носителя, способного стабильно удерживать низкомолекулярное вещество. В качестве эффективного кандидата для этих целей представлены гибридные полимерные структуры, полученные методом гидротермального синтеза in situ. В качестве модельного низкомолекулярного вещества для инкапсуляции в структуры был использован флуоресцентный краситель родамин Б. Полученные гибридные полимерные структуры продемонстрировали хорошую стабильность при их хранении в водной среде в течение 336 ч с высвобождением низкомолекулярного красителя родамина Б не более 2%. Кроме того, было исследовано влияние условий получения гибридных носителей (включая состав носителей (толщина полимерной оболочки и наличие ядра карбоната кальция) и температуру синтеза) на их физикохимические характеристики. Таким образом, был выявлен оптимальный подход к получению флуоресцентных гибридных полимерных носителей с набором желаемых свойств. В частности, было показано, что для получения стабильного гибридного полимерного носителя с яркой флуоресценцией оптимальными условиями получения являются температура гидротермального синтеза 180оС и отсутствие ядра внутри полиэлектролитной оболочки. Результаты, представленные в данном исследовании, могут быть использованы для создания функциональных платформ и систем, обладающих регулируемыми флуоресцентными свойствами и возможностью доставки низкомолекулярных веществ.
- Mak W. C., Cheung K. Y., Trau D. Infl uence of different polyelectrolytes on layer-by-layer microcapsule properties: Encapsulation effi ciency and colloidal and temperature stability // Chemistry of Materials. 2008. Vol. 20, № 17. P. 5475–5484. https://doi.org/10.1021/cm702254h
- Song W., He Q., Möhwald H., Yang Y., Li J. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug // Journal of Controlled Release. 2009. Vol. 139, № 2. P. 160–166. https://doi.org/10.1016/j.jconrel.2009.06.010
- Caruso F., Yang W., Trau D., Renneberg R. Microencapsulation of uncharged low molecular weight organic materials by polyelectrolyte multilayer self-assembly // Langmuir. 2000. Vol. 16, № 23. P. 8932–8936. https:// doi.org/10.1021/la000401s
- Yi Q., Sukhorukov G. B. UV light stimulated encapsulation and release by polyelectrolyte microcapsules // Advances in Colloid and Interface Science. 2013. Vol. 207, № 1. P. 280–289. https://doi.org/10.1016/j.cis.2013.11.009
- Li J., Fan J., Cao R., Zhang Z., Du J., Peng X. Encapsulated dye/polymer nanoparticles prepared via miniemulsion polymerization for inkjet printing // ACS Omega. 2018. Vol. 3, № 7. P. 7380–7387. https://doi.org/10.1021/acsomega.8b01151
- Asua J. M. Miniemulsion polymerization // Progress in Polymer Science. 2002. Vol. 27, № 7. P. 1283–1346. https://doi.org/10.1016/s0079-6700(02)00010-2
- Zhenqian Z., Sihler S., Ziener U. Alizarin Yellow R (AYR) as compatible stabilizer for miniemulsion polymerization // Journal of Colloid and Interface Science. 2017. Vol. 507. P. 337–343. https://doi.org/10.1016/j.jcis.2017.08.007
- Landfester K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles // Angewandte Chemie International Edition. 2009. Vol. 48, № 25. P. 4488–4507. https://doi.org/10.1002/anie.200900723
- Faucheu J., Gauthier C., Chazeau L., Cavaillé J.-Y., Mellon V., Lami E. B. Miniemulsion polymerization for synthesis of structured clay/polymer nanocomposites: Short review and recent advances // Polymer. 2010. Vol. 51. P. 6–17. https://doi.org/10.1016/j.polymer.2009.11.044
- Umezawa M., Ueya Yu., Ichihashi K., Thi Kim Dung D., Soga K. Controlling molecular dye encapsulation in the hydrophobic core of core–shell nanoparticles for in vivo imaging // Biomedical Materials & Devices. 2023. Vol. 1. P. 605–617. https://doi.org/10.1007/s44174- 023-00073-0
- Kohl F. F. E., Hinckley J. A., Wiesner U. B. Dye encapsulation in fl uorescent core−shell silica nanoparticles as probed by fl uorescence correlation spectroscopy // The Journal of Physical Chemistry C. 2019. Vol. 123, № 15. P. 9813–9823. https://doi.org/10.1021/acs.jpcc.9b00297
- Soga N., Watanabe R., Noji H. Attolitre-sized lipid bilayer chamber array for rapid detection of single transporter // Scientifi c Reports. 2015. Vol. 5. https://doi.org/10.1038/ srep11025
- Ga M., Frueh J., Tao T., Petro A. V., Petrov V. V., Shes terikov E. V., Tverdokhlebov S. I., Sukhorukov G. B. Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound // Nanoscale. 2017. Vol. 9, № 21. P. 7063–7070. https://doi.org/10.1039/ C7NR01841J
- Abdelhamid H. N. Dye encapsulation and one-pot synthesis of microporous–mesoporous zeolitic imidazolate frameworks for CO2 sorption and adenosine triphosphate biosensing // Dalton Trans. 2023. Vol. 52. P. 2506–2517. https://doi.org/10.1039/D2DT04084K
- Skirtac A. G., Yashchenok A. M., Möhwald H. Encapsulation, release and applications of LbL polyelectrolyte multilayer capsules // Chemical Communications. 2011. Vol. 47, № 48. P. 12736–12746. https://doi.org/10.1039/ C1CC13453A
- Volodkin D. V., Petrov A. I., Prevot M., Sukhorukov G. B. Matrix polyelectrolyte microcapsules: New system for macromolecule encapsulation // Langmuir. 2004. Vol. 20, № 8. P. 3398–3406. https://doi.org/10.1021/la036177z
- Kim M., Yeo S. J., Highley C. B., Burdick J. A., Yoo P. J., Doh J., Lee D. One-Step generation of multifunctional polyelectrolyte microcapsules via nanoscale interfacial complexation in emulsion (NICE) // ACS Nano. 2015. Vol. 9, № 8. P. 8269–8278. https://doi.org/10.1021/acsnano.5b02702
- Kim A. L., Musin E. V., Oripova M. J., Oshchepkova Y. I., Salikhov S. I., Tikhonenko S. A. Polyelectrolyte microcapsules – a promising target delivery system of amiodarone with the possibility of prolonged release // International Journal of Molecular Sciences. 2023. Vol. 24. Article number 3348. https://doi.org/10.3390/ijms24043348
- Liqin G., Xin T., Renwang S., Jun X. Layer-by-layer self-assembly of giant polyelectrolyte microcapsules templated by microbubbles as potential hydrophilic or hydrophobic drug delivery system // Colloid and Interface Science Communications. 2022. Vol. 47, № 23. https://doi.org/10.1016/j.colcom.2022.100603
- Kalenichenko D., Nifontova G., Karaulov A., Sukhanova A., Nabiev I. D. Designing functionalized polyelectrolyte microcapsules for cancer treatment // Nanomaterials. 2021. Vol. 11. Article number 3055. https://doi. org/10.3390/nano11113055
- Son D., Cui J., Ju Y., Faria M., Sun H., Howard C. B., Thurecht K. J., Caruso F. Cellular targeting of bispecifi c antibody-functionalized poly(ethylene glycol) capsules: Do shape and size matter? // ACS Applied Materials & Interfaces. 2019. Vol. 11, № 32. P. 28720–28731. https:// doi.org/10.1021/acsami.9b10304
- Simioni A. R., de Jesus P. C. C., Tedesco A. C. Layerby-Layer hollow photosensitizer microcapsule design via a manganese carbonate hard template for photodynamic therapy in cells // Photodiagnosis and Photodynamic Therapy. 2018. Vol. 22. P. 169–177. https://doi. org/10.1016/j.pdpdt.2018.04.011
- Володькин Д. В. Иммобилизация белков в микрочастицы, сформированные методом последовательной адсорбции противоположно заряженных полиэлектролитов: дис. … канд. хим. наук. М., 2005. 166 с.
- Donath E., Sukhorukov G. B., Caruso F., Davis S. A., Möhwald H. Novel hollow polymer shells by colloidtemplated assembly of polyelectrolytes // Angewandte Chemie International Edition. 1998. Vol. 37, № 16. P. 2201–2205. https://doi.org/10.1002/(SICI)1521- 3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E
- Köhler K., Shchukin D. G., Möhwald H., Sukhorukov G. B. Thermal behavior of polyelectrolyte multilayer microcapsules. 1. The effect of odd and even layer number // The Journal of Physical Chemistry B. 2005. Vol. 109, № 39. P. 18250–18259. https://doi.org/10.1021/jp052208i
- Köhler K., Möhwald H., Sukhorukov G. B. Thermal behavior of polyelectrolyte multilayer microcapsules. 2. Insight into molecular mechanisms for the PDADMAC/ PSS System // The Journal of Physical Chemistry B. 2006. Vol. 110, № 47. P. 24002–24010. https://doi.org/10.1021/ jp062907a
- Musin E. V., Kim A. L., Tikhonenko S. A. Destruction of polyelectrolyte microcapsules formed on CaCO3 microparticles and the release of a protein included by the adsorption method // Polymers. 2020. Vol. 12, № 3. Article number 520. https://doi.org/10.3390/polym12030520
- Pechenkin M. A., Möhwald H., Volodkin D. V. pH- and salt-mediated response of layer-by-layer assembled PSS/ PAH microcapsules: Fusion and polymer exchange // Soft Matter. 2012. Vol. 8, № 33. Article number 8659. https:// doi.org/10.1039/c2sm25971k
- Gao C., Leporatti S., Moya S., Donath E., Möhwald H. Swelling and shrinking of polyelectrolyte microcapsules in response to changes in temperature and ionic strength // Chemistry – A European Journal. 2003. Vol. 9, № 4. P. 915–920. https://doi.org/10.1002/chem.200390113
- Demina P. A., Sindeeva O. A., Abramova A. M., Prikhozhdenko E. S., Verkhovskii R. A., Lengert E. V., Sapelkin A. V., Goryacheva I. Yu., Sukhorukov G. B. Fluorescent convertible capsule coding systems for individual cell labeling and tracking // ACS Applied Materials & Interfaces. 2021. Vol. 13, № 17. P. 19701–19709. https:// doi.org/10.1021/acsami.1c02767
- Demina P. A., Sindeeva O. A., Abramova A. M., Saveleva M. S., Sukhorukov G. B., Goryacheva I. Y. Fluorescent polymer markers photoconvertible with a 532 nm laser for individual cell labeling // Journal of Biophotonics. 2023. Vol. 16, № 6. https://doi.org/10.1002/jbio.202200379
- Sindeeva O. A., Demina P. A., Kozyreva Z. V., Muslimov A. R., Gusliakova O. I., Laushkina V. O., Mordovina E. A., Tsyupka D., Epifanovskaya O. S., Sapach A. Y., Goryacheva I. Yu., Sukhorukov G. B. Labeling and tracking of individual human mesenchymal stromal cells using photoconvertible fl uorescent microcapsules // International Journal of Molecular Sciences. 2023. Vol. 24. Article number 13665. https://doi.org/10.3390/ijms241713665
- Программа для анализа и обработки изображений ImageJ. URL: https://imagej.net/ij/index.html (дата обращения: 15.06.23).
- Saveleva M. S., Lengert E. V., Verkhovskii R. A., Abalymov A. A., Pavlov A. M., Ermakov A. V., Prikhozhdenko E. S., Shtykov S. N., Svenskaya Yu. I. CaCO3-based carriers with prolonged release properties for antifungal drug delivery to hair follicles // Biomaterials Science. 2022. Vol. 10. P. 3323–3345. https://doi.org/10.1039/ D2BM00539E 3
- Tao S., Zhu S., Feng T., Xia C., Song Y., Yang B. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review // Materials Today Chemistry. 2017. Vol. 6. P. 13–25. https://doi. org/10.1016/j.mtchem.2017.09.001
- Степухович М. С., Абрамова А. М., Бакал А. А., Горячева И. Ю. Новые деградируемые фотокатализаторы для очистки сточных вод // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2023. Т. 23, вып. 2. С. 148–158. https://doi. org/10.18500/1816-9775-2023-23-2-148-158
- Antipov A. A., Sukhorukov G. B., Möhwald H. Infl uence of the ionic strength on the polyelectrolyte multilayers’ permeability // Langmuir. 2003. Vol. 19, № 6. P. 2444–2448. https://doi.org/10.1021/la026101n
- Tang K., Besseling N. A. M. Formation of polyelectrolyte multilayers: Ionic strengths and growth regimes // Soft Matter. 2016. Vol. 12, № 4. P. 1032–1040. https://doi. org/10.1039/C5SM02118A
- Ermakov A. V., Inozemtseva O. A., Gorin D. A., Sukhorukov G. B., Belyakov S., Antipina M. N. Infl uence of heat treatment on loading of polymeric multilayer microcapsules with rhodamine B // Macromolecular Rapid Communications. 2018. Article number 1800200. https://doi. org/10.1002/marc.201800200
- Ibarz G., Dähne L., Donath E., Möhwald H. Controlled permeability of polyelectrolyte capsules via defi ned annealing // Chemistry of Materials. 2002. Vol. 14, № 10. P. 4059–4062. https://doi.org/10.1021/cm011300y
- Han Y., Bu, J., Zhang Y., Tong W., Gao C. Encapsulation of photosensitizer into multilayer microcapsules by combination of spontaneous deposition and heat-induced shrinkage for photodynamic therapy // Macromolecular Bioscience. 2012. Vol. 12, № 10. P. 1436–1442. https://doi.org/10.1002/mabi.201200191
- Sousa de Almeida M., Susnik E., Drasler B., TaladrizBlanco P., Petri-Fink A., Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine // Chemical Society Reviews. 2021. Vol. 50, № 9. P. 5397–5434. https://doi.org/10.1039/ d0cs01127d