Для цитирования:
Шабловский Я. О. Гетерофазные явления при фракционировании трития в водных системах // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2024. Т. 24, вып. 1. С. 35-43. DOI: 10.18500/1816-9775-2024-24-1-35-43, EDN: FQNTJT
Гетерофазные явления при фракционировании трития в водных системах
Актуальность проблемы трития в экологической химии определяется тем, что тритий – единственный из радиоактивных изотопов, который невозможно обезвредить фильтрацией. Тритий возникает при побочных радиохимических процессах в ядерных реакторах и обнаруживается в радиоактивных отходах и выбросах в форме оксидов трития – тритиевых изотопологов воды. Побочным продуктом эксплуатации ядерных реакторов оказывается прототритиевая вода – раствор оксида прототрития HTO в лёгкой воде H2 О. Реже приходится иметь дело с дейтеротритиевой водой – раствором оксида дейтеротрития DTO в тяжёлой воде D2 О. Предложены различные подходы, обеспечивающие возможности выделения трития либо его оксида изтритиевой воды. Выбор процесса определяется тем, будет ли очищенная от трития вода возвращаться в реакторную систему либо сбрасываться в окружающую среду, а также тем, имеется ли потребность в извлечении молекулярного трития для его дальнейшего применения. Основное внимание уделено процессу электросонолиза тритиевой воды как экономически и экологически предпочтительному способу её обезвреживания, позволяющему получать молекулярный тритий. Разложению тритиевой воды должно предшествовать её концентрирование, которое целесообразно производить двухступенчато: кондиционирующая водоподготовка (предварительное концентрирование) и получение высококонцентрированной тритиевой воды. В этом контексте в работе рассмотрено обратноосмотическое кондиционирование тритиевой воды и её последующее концентрирование солевой ректификацией.
- Перевезенцев А. Н., Розенкевич М. Б. Технология трития для термоядерного реактора. Долгопрудный : ИД «Интеллект», 2019. 336 с.
- Văsaru G. Tritium isotope separation. Ann Arbor, London, Tokyo : CRC Press Inc., Boca Raton, 1993. 320 p.
- Магомедбеков Э. П., Белкин Д. Ю., Растунова И. Л., Сазонов А. Б., Селиваненко И. Л., Кулов Н. Н. Ректификация воды как метод детритизации тяжеловодного замедлителя // Теоретические основы химической технологии. 2017. Т. 51, № 4. С. 376–383.
- Карцев В. Н. К пониманию структурочувствительности температурного коэффициента внутреннего давления // Журнал структурной химии. 2004. Т. 45, № 5. С. 877–882.
- Сазонов А. Б., Алешина А. В., Магомедбеков Э. П. Иммобилизация тритийсодержащих отходов путем включения в цементную матрицу // Радиохимия. 2009. Т. 51, № 4. С. 363–365.
- Satoshi N., Toshihiro A., Hitoshi K., Haruki I., Ryo O. Tritiated water removal method based on hydrate formation using heavy water as co-precipitant // Chemical Engineering Journal. 2023. Vol. 465, № 1. Р. 142979-1–142979-11. https://doi.org/10.1016/j. cej.2023.142979
- Ferreira M. F., Turner A. Tritium: Its relevance, sources and impacts // Science of the Total Environment. 2023. Vol. 876, № 1. Р. 162816-1–162816-9.
- Магомедбеков Э. П., Растунова И. Л. Проблемы детритизации водных радиоактивных отходов // Радиоактивные отходы. 2022. № 2 (19). С. 17–24.
- Ρrabhakar S., Misra Β. M., Ramami M. P. S. Relative transport of water (H2O) and tritiated water (HTO) across cellulose acetate membranes // Radiochimica Acta. 1986. Vol. 39, № 2. Р. 93–96. https://doi.org/10.1524/ ract.1986.39.2.93
- Sun D., Run L. Hydrogen isotopic water separation in membrane distillation // Separation and Purifi cation Technology. 2023. Vol. 314, № 1. Р. 123634-1–123634-19. https://doi.org/10.1016/j.seppur.2023.123634
- Lott P. F., Millich F. Instrumentation for osmometry // Journal of Chemical Education. 1966. Vol. 43, № 3. Р. A191–A208.
- Nelson D. A., Duncan J. B., Jensen G. A., Burton S. D. Isotopomeric water separations with supported polyphosphazene membranes // Journal of Membrane Science. 1996. Vol. 112, № 2. Р. 105–113. https://doi. org/10.1016/0376-7388(95)00100-X
- Duncan J. B., Nelson D. A. The separation of tritiated water using supported polyphosphazene membranes // Journal of Membrane Science. 1999. Vol. 157, № 2. Р. 211–217. https://doi.org/10.1016/S0376-7388(98)00380-9
- Соботович Э. В., Пушкарёв А. В., Литовченко А. С., Пушкарёва Р. А., Долин В. В. Феномен изотопного осмоса при использовании бентонитовых мембран // Доклады НАН Украины. 2007. № 1. С. 179–183.
- Dzaugis M. E., Spivack A. J., D’Hondt S. A quantitative model of water radiolysis and chemical production rates near radionuclide containing // Radiation Physics and Chemistry. 2015. Vol. 115, № 1. Р. 127–134. https://doi. org/10.1016/j.radphyschem.2015.06.011
- Андреев Б. М., Магомедбеков Э. П., Розенкевич М. Б., Сахаровский Ю. А. Гетерогенные реакции изотопного обмена трития / под общ. ред. Б. Ф. Мясоедова. М. : Едиториал УРСС, 1999. 206 с.
- Кулов Н. Н., Полковниченко А. В., Лупачев Е. В., Вошкин А. А., Магомедбеков Э. П. Распределение изотопов водорода между фазами при парожидкостном равновесии водных солевых растворов // Теоретические основы химической технологии. 2020. Т. 54, № 1. С. 3–9. https://doi.org/10.31857/S0040357120010108
- Tanaka H., Kado T., Negita H. The fractionation of tritiated water in an equilibrium between organic hydrates and their aqueous solutions // Bulletin of the Chemical Society of Japan. 1974. Vol. 47, № 2. Р. 278–280.
- Кондакова Ю. В., Шестаков И. А., Сазонов А. Б. Термодинамические изотопные эффекты трития в амидах и аминокислотах // Успехи в химии и химической технологии. 2017. Т. 31, № 10. С. 34–36.
- Королёва В. С., Шестаков И. А., Сазонов А. Б. Изотопное равновесие дейтерия и тритиямеждумолекулами воды и углеводов // Успехи в химии и химической технологии. 2018. Т. 32, № 9 (205). С. 21–23.
- Heinze S., Stolz T., Ducret D., Colson J.-C. Self-radiolysis of tritiated water: Experimental study // Fusion Science and Technology. 2005. Vol. 48, № 1. P. 673–679. https:// doi.org/10.13182/FST05-A1014
- Stolz T., Ducret D., Heinze S., Baldacchino G., Colson J.-C., Dedieu B., Pelletier Th. Self-radiolysis of tritiated water // Fusion Engineering and Design. 2003. Vol. 69, № 1–4. P. 57–60. https://doi.org/10.1016/S0920- 3796(03)00236-9
- Морозов А. В., Сахипгареев А. Р., Шлёпкин А. С., Сошкина А. С. Определение физико-химических свойств борной кислоты // Энергетические системы. 2019. № 1. С. 67–73.