Gene Expression of Specific Factors Transcription Exp1 during Morphogenesis Xylotrophic Basidiomycete Lentinus Edodes
It was established that gene expression exp1, encoding a specific transcription factor was activated during transition the vegetative to the generative stage of development in cultivating xylotrophic basidiomycete Lentinus edodes (shiitake) on wood substrate. Especially this is characteristic from stage previous of fruiting and connected with the formation of brown mycelial mat. A study showed that exp1 gene transcriptional activity increased 10-fold during formation of the morphological structure, while drop in activity of the gene was marked for primordial and fruiting bodies. In cultivation on artificial nutrient media exp1 gene activity in all stages of development was suppressed, whereas when grown in vivo on the wood substrate level of activity above that a specific transcription factor 15–150-fold, depending of the stage of morphogenesis. Exp1 increased activity as maturation basidum. In old fruit bodies of transcriptional activity of the gene was 4–5 of times larger than that of the primordial. In all likelihood, a specific transcription factor exp1 from shiitake may be involved in the aging process. Thus, the activation of the gene may serve as marker exp1 readiness xylotrophic fungi to fruit, as well as an indicator of the adequacy of the culture conditions.
1. Feofi lova E. P. Mycelial fungi as a source for obtaining new medical products with immunomodulating, antitumoral, and wound healing activities // Immunopathology, Allergology, Infectology (Moscow). 2004. Vol. 1. P. 27–33.
2. Bender S., Lonergan G.T., Backhaus J., Cross R. F., Baker W. L. The antibiotic activity of the edible and medicinal mushroom Lentinus edodes (Berk.) Sing. // Intern. J. Medicinal Mushrooms. 2001. Vol. 3, № 2–3. P. 118.
3. Okeke B. C., Paterson A., Smith J. E., Watson-Craik I. A. The relationship between phenoloxidase activity, soluble protein and ergosterol with growth of Lentinus species in oak sawdust logs // Appl. Microbiol. Biotechnol. 1994. Vol. 41. P. 28–31.
4. Latchman D. S. Transcription factors: an overview // Intern. J. Biochem. Cell Biol. 1997. Vol. 29. P. 1305–1312.
5. Lobe C. G. Transcription factors and mammalian development // Curr. Top. Develop. Biol. 1992. Vol. 27. Р. 351–383.
6. Honma T., Goto K. Complexes of MADS-box proteins are suffi cient to convert leaves into fl oral organs // Nature. 2001. Vol. 409. P. 525–529.
7. Xu G., Kong H. Duplication and divergence of fl oral MADS-box genes in grasses: evidence for the generation and modifi cation of novel regulators // J. Integ. Plant Biol. 2007. Vol. 49. P. 927–939.
8. Zhu T., Budwort P., Han B., Brown D., Chang H.-S., Zou G., Wang X. Toward elucidating the global gene expression patterns of developing Arabidopsis: Parallel analysis of 8300 genes by a high-density oligonucleotide probe array // Plant Physiol. Biochem. 2001. Vol. 39. P. 221?242.
9. Serna L. BHLH protein know when to make a stoma // Trend. Plant Sci. 2007. Vol. 12. P. 483–485.
10. Chen Y. H., Yang X. Y., He K., Liu M. H., Li J. G., Gao Z. F., Lin Z. Q., Zhang Y. F., Wang X. X., Qiu X. M., Shen Y. P., Zhang L., Deng X. H., Luo J. C., Deng X. W., Chen Z. L., Gu H. Y., Qu L. J. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family // Plant Molec. Biol. 2006. Vol. 60. P. 107–124.
11. Eulgem Th., Rushton P.J., Robatzek S., Somssich I. The WRKY superfamily of plant transcription factors // Trend. Plant Sci. 2000. Vol. 5. P. 199–206.
12. Hake S., Ori N. Plant morphogenesis // Nature Gen. 2000. Vol. 31. P. 121–122.
13. Ulker B., Somssich I. E. WRKY transcription factors : from DNA binding towards biological function // Curr. Opin. Plant Biol. 2004. Vol. 7. P. 491–498.
14. Ветчинкина Е. П., Никитина В. Е. Морфологические особенности роста мицелия и плодоношения некото- рых штаммов съедобного ксилотрофного базидиомицета Lentinus edodes // Известия Самар. науч. центра РАН. 2007. Т. 9, № 4. С. 1085–1090.
15. Ветчинкина Е. П., Никитина В. Е. Сравнительный анализ белкового комплекса морфологических структур культивируемого ксилотрофного базидиомицета Lentinus edodes // Микология и фитопатология. 2008. Т. 42, № 2. С. 173–177.
16. Остерман Л. А. Методы исследования белков и нуклеиновых кислот: Электрофорез и ультрацентри- фугирование. М. : Наука, 1981. 288 с.
17. Sakamoto Yu., Nakade K., Sato T. Characterization of the post-harvest changes in gene transcription in the gill of the Lentinula edodes fruiting body // Curr Genet. 2009. Vol. 55. P. 409–423.
18. Trumbly R. J. Glucose repression in the yeast Saccharomyces cerevisiae // Molecular Microbiology. 1992. Vol. 6, № 1. P. 15–21.
19. Huang G. H., Nie X. Y., Chen J. Y. CaMac1, a Candida albicans copper ion-sensing transcription factor, promotes fi lamentous and invasive growth in Saccharomyces cerevisiae // Acta Biochim. Biophys. Sin. 2006. Vol. 38, № 3. P. 213–220.
20. Roeder R. G. The role of general initiation factors in transcription by RNA polymerase II // Trends Biochem. Sci. 1996. Vol.
21, № 9. P. 327–335. 21. Muraguchi H., Fujita T., Kishibe Y., Konno K., Ueda N., Nakahori K., Yanagi S.O., Kamada T. The exp1 gene essential for pileus expansion and autolysis of the inky cap mushroom Coprinopsis cinerea (Coprinus cinereus) encodes an HMG protein // Fung Genet. Biol. 2008. Vol. 45. H. 890–896.