Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Full text:
(downloads: 132)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
543.424.2

Detection of Pharmaceuticals Using Magnetic Sers-active Core–Shell Structures

Autors: 
Markina Natalia Evgenievna, Saratov State University
Pozharov Michail Vladimirovich, Saratov State University
Zakharevich Andrey Machailovich, Saratov State University
Burmistrova Natalia A., Saratov State University
Markin Aleksey Viktorovich, Saratov State University
Abstract: 

The work is devoted synthesis, investigation and application of composites based on calcium carbonate microspheres, with embedded nanoparticles of magnetite (Fe3O4), coated by silver nanostructured shell. This composite (SERS-substrate) was used for surface-enhanced Raman spectra (SERS) registration of rhodamine 6G and different pharmaceuticals such as ipratropium bromide, chloramphenicol, propranolol, pindolol, tamoxifen, diltiazem. SERS analysis was performed via addition of analyzed solution to SERS-substrate, sorption step, separation of SERS-substrate with analyzed molecules from supernatant by magnet and, finally, SERS spectra registration. Enhancement factor for obtained SERS-substrate was found around 107 (for rhodamine 6G). Remote control of this SERS-substrate by magnetic fields and high Raman enhancement enable wide applications range for fast and sensitive analysis on place.

Reference: 

1. Cialla D., Marz A., Bohme R., Theil F., Weber K., Schmitt M., Popp J. Surface-enhanced Raman spectroscopy (SERS): progress and trends // Anal. Bioanal. Chem. 2012. Vol. 403. P. 27–54.

2. Schlucker S. Surface-enhanced Raman spectroscopy : concepts and chemical applications // Angew. Chem. Int. Ed. 2014. Vol. 53. P. 2–42.

3. Braun G. B., Lee S. J., Laurence T., Fera N., Fabris L., Bazan G. C., Moskovits M., Reich N. O. Generalized approach to SERS-active nanomaterials via controlled nanoparticle linking, polymer encapsulation, and smallmolecule infusion // J. Phys. Chem. C. 2009. Vol. 113. P. 13622–13629.

4. Fu X., Bei F., Wang X., Yang X., Lu L. Two-dimensional monolayers of single-crystalline ?-Fe2O3 nanospheres : preparation, characterization and SERS effect // Mater. Lett. 2009. Vol. 63. P. 185–187.

5. Nielsen P., Hassing S., Albrektsen O., Foghmoes S., Morgen P. Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate // J. Phys. Chem. C. 2009. Vol. 113. P. 14165–14171.

6. Hu J. W., Zhang Y., Li J. F., Liu Z., Ren B., Sun S. G., Tian Z. Q., Lian T. Synthesis of Au@Pd core–shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy // Chem. Phys. Lett. 2005. Vol. 408. P. 354–359.

7. Yang Y., Matsubara S., Xiong L., Hayakawa T., Nogami M. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties // J. Phys. Chem. C. 2007. Vol. 111. P. 9095–9104.

8. Qian X.-M., Nie S. M. Single-molecule and singlenanoparticle SERS: from fundamental mechanisms to biomedical applications // Chem. Soc. Rev. 2008. Vol. 37. P. 912–920.

9. Markin A. V., German S. V., Apuhtina M. A., Malyar I. V., Rusanova T. Yu., Gorin D. A. Silver coated calcium carbonate core with embedded magnetite nanoparticles: preparation and Raman spectroscopy characterization // Nanoparticles, nanostructured coatings and microcontainers : technology, properties, applications : 3rd Intern. workshop. Ankara, 2011. P. 29-30.

10. Pazos-Perez N., Borke T., Andreeva D. V., Alvarez-Puebla R. A. Silver coated aluminium microrods as highly colloidal stable SERS platforms // Nanoscale. 2011. Vol. 3. P. 3265.

11. Stetciura I. Y., Markin A. V., Ponomarev A. N., Yakimansky A. V., Demina T. S., Grandfi ls C., Volodkin D. V., Gorin D. A. New surface-enhanced Raman scattering platforms: composite calcium carbonate microspheres coated with astralen and silver nanoparticles // Langmuir. 2013. Vol. 29. P. 4140–4147.

12. Shao M., Ning F., Zhao J., Wei M., Evans D.G., Duan X. Preparation of Fe3O4@SiO2@layered double hydroxide core–shell microspheres for magnetic separation of proteins // J. Amer. Chem. Soc. 2012. Vol. 134. P. 1071–1077.

13. Wang W., Jiang Y., Wen S., Liu L., Zhang L. Preparation and characterization of polystyrene/Ag core–shell microspheres – a bio-inspired poly(dopamine) approach // J. Colloid Interface Sci. 2012. Vol. 368. P. 241–249.

14. Deng Z., Chen M., Wu L. Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surfaceenhanced Raman scattering properties // J. Phys. Chem. C. 2007. Vol. 111. P. 11692–11698.

15. Cheang T., Wang S., Hu Z., Xing Z. H., Chang G., Yao C., Liu Y., Zhang H., Xu A. W. Calcium carbonate/ CaIP6 nanocomposite particles as gene delivery vehicles for human vascular smooth muscle cells // J. Mater. Chem. 2010. Vol. 20. P. 8050–8055.

16. Peng C., Zhao Q., Gao C. Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multilayerscoated CaCO3 microparticles // Colloids Surf. A. 2010. Vol. 353. P. 132–139.

17. Nicoletti O., Pena F. de la, Leary R. K., Holland D. J., Ducati C., Midgley P. A. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles // Nature. 2013. Vol. 502. P. 80–84.

18. German S. V., Inozemtseva O. A., Markin A. V., Metvalli Kh., Khomutov G. B., Gorin D. A. Synthesis of magnetite hydrosols in inert atmosphere // Colloid. J. 2013. Vol. 75. P. 483–486.

19. Volodkin D. V., Petrov A. I., Prevot M., Sukhorukov G. B. Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation // Langmuir. 2004. Vol. 20. P. 3398–3406.