Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Full text:
(downloads: 65)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
57.084.01

Cytotoxicity Evaluation of Ionic and Colloidal Gold on the Microalga Dunaliella Salina in Microplate Test System

Autors: 
Chumakov D. S., Saratov State University
Golubev A. A., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Konnova Svetlana Anatolyevna, Saratov State University
Dykman L. A., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Bogatyrev V. A., Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences
Abstract: 

Gold nanoparticles are intensively studied in biomedicine. Evaluation of their biocompatibility is highly important. In aquatic systems, microalgae, being the primary producers, are the base of the trophic webs. They are the first target for most of the pollutants present in the medium. To study the toxicity of ionic and colloidal gold on the saltwater microalga Dunaliella salina. To describe several physicochemical characteristics of nanomaterials that affect their toxicological efficiency. Cytotoxicity of HAuCl4, 15 nm citrate gold nanoparticles and 1–2 nm phosphine-stabilized gold nanoclusters was assessed. Chlorophyll content as a test –function was used. Spectrophotometric method for chlorophyll determination in vivo in suspensions of D.salina cultures was applied. Calculated EC50 48h value of ionic gold was 25,8±0,3 mg Au/L. EC50 value of phosphine-stabilized gold nanoclusters was 32,2±1,1 mg Au/L. It was not possible to calculate EC50 for citrate gold nanoparticles, as they were non-toxic at all concentrations used. Toxic effect of phosphine-stabilized gold nanoclusters disappeared after heating the suspension (107 C°, 30 min) in the presence of citric acid. It was shown that gold nanoparticles size is an important parameter underlying their cytotoxicity.

Reference: 
  1. Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives // Chem. Soc. Rev. 2012. Vol. 41, № 6. P. 2256–2282.
  2. Moreno-Garrido I., Perez S., Blasco J. Toxicity of silver and gold nanoparticles on marine microalgae // Mar. Environ. Res. 2015. Vol. 111. P. 60–73.
  3. Baker T. J., Tyler C. R., Galloway T. S. Impacts of metal and metal oxide nanoparticles on marine organisms // Environ. Pollut. 2014. Vol. 156. P. 257–271.
  4. Renault S., Baudrimont M., Mesmer-Dudons N., Gonzalez P., Mornet S., Brisson A. Impacts of gold nanoparticle exposure on two freshwater species : a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbiculafluminea) // Gold Bulletin. 2008. Vol. 41, № 2. P. 116–126.
  5. Hoecke K. van, De Schamphelaere K. A., Ali Z., Zhang F., Elsaesser A., Rivera-Gil P., Parak W. J., Smagghe G., Howard C. V., Janssen C. R. Ecotoxicity and uptake of polymer coated gold nanoparticles // Nanotoxicology. 2013. Vol. 7, № 1. P. 37–47.
  6. Dedkova K., Bures Z., Palarcik J., Vlcek M., Kukutschova J. Acute toxicity of gold nanoparticles to freshwater green algae // Proc. of NanoCon. 2014. URL: http:// nanocon2014.tanger.cz/? les/proceedings/20/reports/3286. pdf (дата обращения: 18.04.2017).
  7. Perreault F., Bogdan N., Morin M., Claverie J., Popovic R. Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes // Nanotoxicology. 2012. Vol. 6, № 2. P. 109–120.
  8. Larguinho M., Correia D., Diniz M. S., Baptista P. V. Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels // J. Nanopart. Res. 2014. Vol. 16. P. 2549–2560.
  9. Franklin N. M., Stauber J. L., Apte S. C., Lim R. P. Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays // Environ. Toxicol. Chem. 2002. Vol. 21, № 4. P. 742–751.
  10. Pan Y., Neuss S., Leifert A., Fischler M., Wen F., Simon U., Schmid G., Brandau W., Jahnen- Dechent W. Size dependent cytotoxicity of gold nanoparticles // Small. 2007. Vol. 3, № 11. P. 1941–1949.
  11. Khlebtsov N., Dykman L. Biodistribution and toxicity of engineered gold nanoparticles : a review of in vitro and in vivo studies // Chem. Soc. Rev. 2011. Vol. 40, № 3. P. 1647–1671.
  12. Oren A. The ecology of Dunaliella in high-salt environments // J. Biol. Res. 2014. Vol. 21, № 1. P. 23–31.
  13. Масюк Н. П. Морфология, систематика, экология, географическое распространение рода Dunaliellateod. и перспективы его практического использования. Киев : Наук. думка, 1973. 245 с.
  14. Богатырев В. А., Голубев А. А., Селиванов Н. Ю., Прилепский А. Ю., Букина О. Г., Пылаев Т. Е., Bibikova O. A., Дыкман Л. А., Хлебцов Н. Г. Лабораторная тестсистема оценки токсичности наноматериалов для микроводоросли Dunaliella salina // Рос. нанотехнологии. 2015. Т. 10, № 1–2. C. 92–99.
  15. Golubev A. A., Prilepskii A. Y., Dykman L. A., Khlebtsov N. G., Bogatyrev V. A. Colorimetric evaluation of the viability of the microalga Dunaliella salina as a test tool for nanomaterial toxicity // Toxicol. Sci. 2016. Vol. 151, № 1. P. 115–125.
  16. Shaish A., Mavron A., Ben-Amotz A. Effect of inhibitors on the formation of stereoisomers in the biosynthesis of ?- carotene in Dunaliella bardawil // Plant Cell Physiol. 1990. Vol. 31, № 5. P. 689–696.
  17. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions // Nature Phys. Sci. 1973. Vol. 241. P. 20–22.
  18. Duff D. G., Baiker A., Edwards P. P. A new hydrosol of gold clusters. 1. Formation and particle size variation // Langmuir. 1993. Vol. 9. P. 2301–2309.
  19. Botha T. L., James T. E., Wepener V. Comparative aquatic toxicity of gold nanoparticles and ionic gold using a species sensitivity distribution approach // J. of Nanomaterials. 2015. Vol. 2015. P. 16–32.