Rhizosphere Microorganisms’ Collection of IBPPM RAS: Revision of Azospirillum Strains Based on 16S rRNA Gene Sequence Analysis
The IBPPM Collection maintains unique pool of bacterial strains related to Azospirillum genus, notable for its biotechnological potential. Progressively developing systematics of this genus requires checking and clarifying the taxonomic position for long-term stored isolates in the collection. Consequently, the species membership was confirmed or defined in the tested Azospirillum strains using a comparative analysis of their full-length 16S rRNA genes combined with morphological, cultural, physiological and biochemical properties, as well as DNA-DNA hybridization data. Members of two proposed new Azospirillum species were found.
1. Baldani J. I., Videira S. S., Dos Santos Teixeira K. R., Reis V. M., De Oliveira A. L. M., Schwab S., De Souza E. M., Pedraza R. O., Baldani V. L. D., Hartmann A. The family Rhodospirillaceae // The Prokaryotes: Alphaproteobacteria and Betaproteobacteria / eds. E. Rosenberg, E.F. DeLong, S. Lory, E. Stackebrandt, F. Thompson. Berlin ; Heidelberg : Springer, 2014. P. 533–618.
2. Lin S.-Y., Hameed A., Liu Y.-C., Hsu Y.-H., Lai W.-A., Shen F.-T., Young C.-C. Azospirillum soli sp. nov., a nitrogen-fi xing species isolated from agriculture soil // Intern. J. Syst. Evol. Microbiol. 2015. Vol. 65. P. 4601–4607.
3. Lin S.-Y., Liu Y.-C., Hameed A., Hsu Y.-H., Huang H.-I., Lai W.-A., Young C.-C. Azospirillum agricola sp. nov., a nitrogen-fi xing species isolated from cultivated soil // Inter. J. Syst. Evol. Microbiol. 2016. Vol. 66. P. 1453–1458.
4. Huang X.-D., El-Alawi Y., Penrose D. M., Glick B. R., Greenberg B. M. Responses of three grass species to creosote during phytoremediation // Environ. Pollut. 2004. Vol. 130. P. 453–463.
5. Huang X.-D., El-Alawi Y., Penrose D. M., Glick B. R., Greenberg B. M. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils // Environ. Pollut. 2004. Vol. 130. P. 465–476.
6. Муратова А. Ю., Турковская О. В., Антонюк Л. П., Макаров О. Е., Позднякова Л. И., Игнатов В. В. Нефтеокисляющий потенциал ассоциативных ризобактерий рода Azospirillum // Микробиология. 2005. Т. 74, № 2. С. 248–254.
7. Mehnaz S. Azospirillum : A Biofertilizer for Every Crop // Plant Microbes Symbiosis: Applied Facets / ed. N. K. Arora. New Delhi : Springer, 2015. P. 297–314.
8. Hungria M., Campo R. J., Souza E. M., Pedroza F. O. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil // Plant Soil. 2010. Vol. 331. P. 413–425.
9. Pereg L., de-Bashan L. E., Bashan Y. Assessment of affi nity and specifi city of Azospirillum for plants // Plant Soil. 2016. Vol. 399. P. 389–414.
10. Lucy M., Reed E., Glick B. R. Applications of free living plant growth-promoting rhizobacteria // Antonie van Leeuwenhoek. 2004. Vol. 86. P. 1–25.
11. Declerck S., Willems A., Heijden van der M. G., Varese G. C., Turkovskaya O., Evtushenko L., Ivshina I., Desmeth P. PERN : An EU-Russia initiative for rhizosphere microbial resources // Trends Biotechnol. 2015. Vol. 33. P. 377–380.
12. Lane D. J. 16S/23S rRNA sequencing // Nucleic acid techniques in bacterial systematics / eds. E. Stackebrandt, M. Goodfellow. Chichester : John Wiley and Sons, 1991. P. 115–175.
13. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование : пер. с англ. М. : Мир, 1984. 480 с.
14. Yoon S. H., Ha S. M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud : A taxonomically united database of 16S rRNA and whole genome assemblies // Intern. J. Syst. Evol. Microbiol. 2017. Vol. 67. P. 1613– 1617.
15. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6 : Molecular Evolutionary Genetics Analysis version 6.0 // Mol. Biol. Evol. 2013. Vol. 30. P. 2725–2729.
16. Методы общей бактериологии / под ред. Ф. Герхарда [и др.] : в 3 т. М. : Мир, 1984. Т. 3. 264 с.
17. Nucleic acid hybridization : a practical approach / eds. B. D. Hames, S. J. Higgins. Oxford ; Washington, DC : I.R.S. Press, 1985. 245 p.
18. Позднякова Л. И., Каневская С. В., Леванова Г. Ф., Барышева Н. Н., Пилипенко Т. Ю., Богатырев В. А., Федорова Л. С. Таксономическое изучение азоспирилл, выделенных из злаков Саратовской области // Микробиология. 1988. Т. 57, № 2. С. 275–278.
19. Hartmann A., Baldani J. I. The genus Azospirillum // The Prokaryotes. A handbook on the biology of bacteria / eds. M. Dworkin, S. Falkow, E. Rosenberg, K-H. Schleifer, E. Stackebrandt. New York : Springer, 2006. Vol. 5. P. 115–140.
20. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Truper H. G. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics // Intern. J. Syst. Bacteriol. 1987. Vol. 37. P. 463–464.
21. Kim M., Oh H. S., Park S. C., Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes // Intern. J. Syst. Evol. Microbiol. 2014. Vol. 62. P. 716–721.
22. Saitou N., Nei M. The neighbor-joining method : A new method for reconstructing phylogenetic trees // Mol. Biol. Evol. 1987. Vol. 4. P. 406–425.
23. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases // Mol. Biol. Evol. 1992. Vol. 9. P. 678–687.
24. Tindall B. J., Rossello-Mora R., Busse H.-J., Ludwig W., Kampfer P. Notes on the characterization of prokaryote strains for taxonomic purposes // Intern. J. Syst. Evol. Microbiol. 2010. Vol. 60. P. 249–266.
25. Maronichea G. A., Garcia J. E., Salcedo F., Creus C. M. Molecular identifi cation of Azospirillum spp. : Limitations of 16S rRNA and qualities of rpoD as genetic markers // Microbiol. Res. 2017. Vol. 195. P. 1–10.
26. Oren A., Garrity G. M. Then and now: a systematic review of the systematics of prokaryotes in the last 80 years // Antonie van Leeuwenhoek. 2014. Vol. 106. P. 43–56.