Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Full text:
(downloads: 287)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
544:[547.917+544.015.4]

Ionic Aggregation of Macromolecules as the Cause of the Kinetic (Non)Stability of Physicochemical Properties of Chitosan Solutions

Autors: 
Fomina Valentina I., Saratov State University
Solonina Nina А., Saratov State University
Shipovskaya Anna B., Saratov State University
Abstract: 

Hydrodynamic, optical, colloid-flocculating, film-forming and structural morphological properties of diluted chitosan solutions (50–640 kDa) in acetate buffer (0.33 М СН3СООН + 0.2 М СН3СOONa), both initial ones and stored for ~1,850 days, were studied. It has been established that the decrease in the intrinsic viscosity of solutions over time is manifested for the reprecipitated and high-molecular-weight samples of chitosan to a greater degree. The viscosity drop effect is not affected by the use of untreated or sterile degassed distilled water to dissolve the polymer. A decrease in the values of the self-diffusion coefficient of macromolecules and an increase in the refractive index increment of solutions were also observed in the course of storage. At the same time, optical, electrochemical and flocculating properties of the polymer system showed a very slight change. A diagram of the kinetics of physicochemical properties of the chitosan–acetate buffer system is proposed, which includes three time stages with different patterns of structure formation. It is suggested that features of the properties of acid-salt solutions over time are controlled by the formation of ion pairs of the polycation with acetate anions, their multiplets, followed by ionic aggregation of the structures formed and liquid-crystal phase separation of the polymer system. It was found that the spontaneously separated phase is represented by a highly crystalline polymorphic modification of the polymer with characteristic features of an «anhydrous » crystal lattice.

Reference: 

1. Aiba S. Studies on chitosan: 3. Evidence for the presence of random and blockcopolymer structures in partially N-acetylated citosans. Intern. J. Biol. Macromol., 1991, vol. 13, no. 1, pp. 40–44.

2. Vikhoreva G. A., Pchelko O. M., Gal’braikh L. S., Rogovina S. Z. The phase state and rheological properties of the chitosan-acetic acid-water system. Polymer Science, Ser. B, 2001, vol. 43, no. 6, pp. 1079–1084.

3. Pillai C. K. S., Willi P., Chandra P. S. Chitin and chitosan polymers: Chemistry, solubility and fi ber formation. Progr. Pol. Sci., 2009, vol. 34, no. 7, pp. 641–678.

4. Rinaudo M., Pavlov G., Desbrieres J. Infl uence of acetic acid concentration on the solubilization of chitosan. Polymer., 1999, vol. 40, no. 25, pp. 7029–7032.

5. Pa J., Yu T. Light scattering study of chitosan in acetic acid aqueous solution. Macromol. Chem. Phys., 2001, vol. 202, no. 7, pp. 985–991.

6. Yevlampieva N. P., Gorshkova M. Y., Volkova I. F., Grigoryan E. S., Lezov A. A., Khurchak A. P., Ryumtsev E. I. Molecular properties of modifi ed chitosan containing a quaternary amino group. Polymer Science, Ser. А, 2011, vol. 53, no. 2, pp. 124–132.

7. Anthonsen M. W., Varum K. M., Hermansson A. M., Smidsrod O., Brant D. A. Aggregates in acidic solutions of chitosans detected by static laser light scattering. Carbohydr. Polym., 1994, vol. 25, no. 1, pp. 13?23.

8. Philippova O. E., Korchagina E. V. Chitosan and its hydrophobic derivatives: Preparation and aggregation in dilute aqueous solutions. Polymer Science, Ser. А, 2012, vol. 54, no. 7, pp. 552–572.

9. Shipovskaya A. B., Fomina V. I., Solonina N. A., Kazmichyova O. F., Kozlov V. A., Timofeeva G. N. Osobennosti strukturoobrazovaniya v rastvorah hitozana [Features of structure formation in chitosan solutions]. In: Struktura i dinamika molekulyarnyh sistem: sb. nauch. tr. [Structure and dynamics of molecular systems: collection of articles scientifi c papers]. Yoshkar-Ola, MarGTU Publ., 2001, iss. VIII, part 2, pp. 147?151 (in Russian).

10. Mogilevskaya E. L., Akopova T. A., Zelenetsii A. N., Ozerin A. N. The crystal structure of chitin and chitosan. Polymer Science, Ser. А., 2006, vol. 48, no. 2, pp. 116–123.

11. Gamzazade A. I., Slimak V. M., Skljar A., Stykova E. V., Pavlova S.-S. A., Rogozin S. V. Investigation of the hydrodynamic properties of chitosan solutions. Acta Polymerica, 1985, vol. 36, no. 8, pp. 420–424.

12. Rinaudo M., Milas M., Le Dung P. Characterization of chitosan. Infl uence of ionic strength and degree of acetylation on chain expansion. Intern. J. Biol. Macromolec., 1993, vol. 15, no. 5, pp. 281–285.

13. Otake K., Shimomura T., Goto T., Imura T., Furuya T., Yoda S., Takebayashi Y., Sakai H., Abe M. One-step preparation of chitosan-coated cationic liposomes by an improved supercritical reverse-phase evaporation method. Langmuir, 2006, vol. 22, no. 9, pp. 4054?4059.

14. Lipatova I. M., Makarova L. I. Effect of hydroacoustic treatment on chitosan dissolution in aqueous acetic acid solutions. Russ. J. Appl. Chem., 2008, vol. 81, no. 12, pp. 2112?2117.

15. Fomina V. I., Solonina N. A., Kazmicheva O. F., Komarov B. A., Shipovskaya A. B. Nestabil'nost' vodnokislotnyh rastvorov hitozana [Instability of aqueous acid solutions of chitosan]. Sovremennye perspektivy v issledovanii hitina i hitozana: materialy 7-i mezhdunarod. konf. [Modern perspectives in the study of chitin and chitosan. Mater. Seventh International. conf.]. Moscow, VNIRO, 2003, pp. 367?371 (in Russian).

16. Kulish E. I., Chernova V. V., Volodina V. P., Kolesov S. V. Possible causes of “inconstancy” in the intrinsic viscosity of chitosan. Polymer Science, Ser. А, 2015, vol. 57, no. 5, pp. 508?514.

17. Plisko E. A., Nud’ga L. A., Danilov S. N. Chitin and Its Chemical Transformations. Russ. Chem. Rev., 1977, vol. 46, no. 8, pp. 764–774.

18. Chen R. H., Chang J. R., Shyur J. S. Effects of Ul-trasonic Conditions and Storage in Acidic Solutions on Changes in Molecular Weight and Polydispersity of Treated Chitosan. Carbohydrate Research, 1997, vol. 299, no. 4, pp. 287–294.

19. Sklyar A. M., Gamzazade A. I., Rogovina L. Z., Titkova L. V., Pavlova S.-S. A., Rogozhin S. V., Slonimskii G. L. Study of rheological properties of dilute and moderately concentrated solutions of chitosan. Polym. Sci. U.S.S.R., 1981, vol. 23, no. 6, pp. 1546?1554.

20. Mironov A. V., Vikhoreva G. A., Kil’deeva, Uspenskii S. A. Reasons for unstable viscous properties of chitosan solutions in acetic acid. Polymer Science, Ser. B, 2007, vol. 49, no. 1, pp. 15 –17.

21. K asaai M. R., Arul J., Charlet G. Fragmentation o f Chitosan by A cids. The Scienti fi c World J., 2013, Article ID 508540. 11 p. DOI: https://doi.org/10.1155/508540

22. Nud'ga L. A., Bochek A. M., Kallistov O. V., Kuchins kij S. A., Petropalovskij G. A. Reologicheskie svojstva i nadmolekulyarnaya organizaciya umerenno koncentrirovannyh rastvorov hitozana v uksusnoj kislote v zavisimosti ot rN [Rheological properties and supramolecular organization of moderately concentrated solutions of chitosan in acetic acid, depending on pH]. Rossijskij zhurn. prikl. himii. [Russ. J. Appl. Chem.], 1993, vol. 66, no.1, pp. 198–202 (in Russian).

23. Abramov A. Y., Kozyreva E. V., Shipovskaya A. B. Peculiarities of the physicochemical properties of chitosan solutions. Europ. J. Natural History, 2013, no. 1, pp. 30–35.

24. Varum K. M., Ottoy M. H., Smidsrod O. Acid Hydrolysis of Chitosans. Carbohydrate Polymers, 2001, vol. 46, no. 1, pp. 89–98.

25. Il’ina A. V., Varlamov V. P. Hydrolysis of Chitosan in Lactic Acid. Appl. Biochem. Microbiology, 2004, vol. 40, no. 3, pp. 300–303.

26. Holme H. K., Davidsen L., Kristiansen A., Smidsrod O. Kinetics and Mechanisms of Depolymerization of Alginate and Chitosan in Aqueous Solution. Carbohydrate Polymers, 2008, vol. 73, no. 4, pp. 656–664.

27. Gamzazade A. I., Sklyar A. M., Pavlova S.-S. A., Rogozhin S. V. On the viscosity properties of chitosan solutions Polym. Sci. U.S.S.R., 1981, vol. 23, no. 3, pp. 665?669.

28. Chen R. H., Chen W. Y., Wang S. T., Hsu C. H., Tsai M. L. Changes in the Mark–Houwink hydrodynamic volume of chitosan molecues in solution of different organic acids, at different temperatures and ionic strengths. Carbohydrate Polymers, 2009, vol. 78, no. 4, pp. 902–907.

29. Nud’ga L. A., Petrova V. A., Bochek A. M., Kallistov O. V., Petrova S. F., Petropavlovskii G. A. Molecular and Supramolecular Transformations in Solutions of Chitosan and Allylchitosan. Polymer Science, Ser. B., 1997, vol. 39, no. 7–8, pp. 259–263.

30. Jocic D., Julia M. R., Erra P. The Time Dependence of Chitosan / Nonionic Surfactant Solution Viscosity. Colloid Polym. Sci., 1996, vol. 274, no. 4, pp. 375–383.

31. Sorlier P., Viton C., Domard A. Relation between Solution Properties and Degree of Acetylation of Chitosan: Role of Aging. Biomacromolecules, 2002, vol. 3, no. 6, pp. 1336–1342.

32. Bojko I. S., Podkolodnaya O. A., Lysachok S. G., Shmakov S. L. Vyazkostnaya degradaciya kislotnyh rastvorov hitozana i ee izuchenie metodom ionnogo zonda [Viscous Degradation of Acidic Chitosan Solutions and its Ionic Probe Study]. Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2015, vol. 15, iss. 4, pp. 21–30 (in Russian).

33. Kramarenko E. Y., Erukhimovich I. Y., Khokhlov A. R. Spinodal stability of a salt polyelectrolyte solution : Effect of formation of ion pairs and multiplets. Polymer Science, Ser. A, 2004, vol. 46, no. 9, pp. 974–984.

34. Cerqueira D. A., Filho G. R., Assuncao R. M. N. A New Value for the Heat of Fusion of a Perfect Crystal of Cellulose Acetate. Polym. Bull., 2006, vol. 56, no. 4–5, pp. 475–484.

35. Li Q. X., Song B. Z., Vang Z. Q., Fan H. L. Electrolytic conductivity behaviors and solution conformations of chitosan in different acid solutions. Carbohydrate Polymers, 2006, vol. 63, no. 2, pp. 272–282.

36. Mikhailov G. P., Tuchkov S. V., Lazarev V. V., Kulish E. I. Complexation of chitosan with acetic acid according to Fourier transform Raman spectroscopy data. Russ. J. Physical Chem., Ser A, 2014, vol. 88, iss. 6, pp. 936–941.

37. Shipovskaya A. B., Fomina V. I., Kazmicheva O. F., Timofeeva G. N., Komarov B. A. Effect of molecular mass on the optical activity of chitosan. Polymer Science, Ser. B, 2007, vol. 49, no. 11–12, pp. 288–291.

38. Shipovskaya A. B., Fomina V. I., Kazmicheva O. F., Rudenko D. A., Malinkina O. N. Optical activity of fi lms based on chitosan of various molecular masses and modifi cations. Polymer Science, Ser. A, 2017, vol. 59, no. 3, pp. 330–341.

39. Koralewski M., Bodek K. H., Marczewsska K. Optical Propeties of Chitosan in Aqueous Solution Lodz. Polish Chitin Soc., 2006, monograph XI, pp. 29–39.

40. Kramarenko E. Yu. Teoriya ehffektov, svyazannyh s ionnoj associaciej v poliehlektrolitnyh sistemah [Theory of effects associated with ionic association in polyelectrolyte systems. Thesis Dis. Doct. Sci. (Phys.-Mat.). Moscow, 2008. 39 p. (in Russian).

41. Volkov E. V., Filippova O. E., Khokhlov A. R. Dual Polyelectrolyte-Ionomer Behavior of Poly(Acrylic Acid) in Methanol: 2. Salt Solutions. Colloid Journal, 2004, vol. 66, no. 6, pp. 669–672.

42. Lamargue G., Lucas J.-M., Viton C., Domard A. Physicochemical behavior ofhomogeneous series of acetylated chitosans in aqueous solution: role of variousstructural parameters. Biomacromolec., 2005, vol. 6, no. 1, pp. 131–142.

43. Samuels R. J. Solid state characterization of the structure of chitosan fi lms. J. Polymer Science, 1981, vol. 19, no. 7, pp. 1081–1105.

44. Fan M., Hu Q., Shen K. Preparation and Structure of Chitosan Soluble in Wide pH Range. Carbohydrate Polymers, 2009, vol. 78, no. 1, pp. 66–71.

45. Ageev E. P., Vikhoreva G. A., Zotkin M. A., Matushkina N. N., Gerasimov V. I., Zezin S. B., Obolonkova E. S. Structure and transport behavior of heat-treated chitosan fi lms. Polymer Science, Ser. A, 2004, vol. 46, no. 12, pp. 1245–1250.

46. Prashanth K. V. H., Kittur F. S., Tharanathan R. N. Solid State Structure of Chitosan Prepared under Different N-Deacetylating Conditions. Carbohydrate Polimers, 2002, vol. 50, no. 1, pp. 27–33.

47. Ogawa K., Yui T., Okuyama К. Three D Structures of chitosan. J. Biological Macromolecules, 2004, vol. 34, no. 1–2, pp. 1–8.

48. Dobrovol’skaya I. P., Popryadukhin P. V., Dresvyanina E. N., Yudin V. E., Elokhovskii V. Yu., Saprykina N. N., Khomenko A. Yu., Chvalun S. N., Maslennikova T. P., Korytkova E. N. Structure and characteristics of chitosan-based fi bers containing chrysotile and halloysite. Polymer Science, Ser. A, 2011, vol. 53, no. 5, pp. 418–423.

49. Chalykh A. E., Petrova T. F., Khasbiullin R. R., Ozerin A. N. Water sorption on and water diffusion in chitin and chitosan. Polymer Science, Ser. A, 2014, vol. 56, no. 5, pp. 614–622.

50. Starodoubtsev S. G., Khokhlov A. R., Sokolov E. L., Chu B. Evidence for Polyelectrolyte/Ionomer Behavior in the Collapse of Polycationic Gels. Macromolecules, 1995, vol. 28, no. 11, pp. 3930–3936.

51. Smirnov V. A., Philippova O. E., Sukhadolski G. A., Khokhlov A. R. Multiplets in polymer gels. Rare earth metal ions luminescence study. Macromolecules, 1998, vol. 31, no. 4, pp. 1162–1167.