Study of the Effectiveness of Using a Saprophytic Strain of Bacteria Bacillus pumilus for the Disposal of Xenobiotics of Hazard Class I–II
Using the model of silt sediments of different ages and soils contaminated with oil products, the utilizing ability of the saprophytic bacterium Bacillus pumilus was studied. It was established that 7 days after the introduction of silt sediment samples of B. pumilus culture into the samples, there was an increase in the mass concentration of copper, cadmium and lead ions, followed by a decrease in the dynamics after 21 days of bacterial exposure. The mass concentration of zinc ions in the sludge samples decreased in dynamics over the entire duration of the experiment. The introduction of the B. pumilus culture into technologically altered soils containing petroleum products contributed to a significant decrease in their mass concentration, most pronounced by the 20th day of the experiment. The results obtained make it possible to consider B. pumilus as an effective and safe component in the development of complex biologics for the rehabilitation of anthropogenically modified soils.
1. Vodyanitsky Yu. N., Ladonin D. V. Zagryazneniye pochv tyazhelymi metallami [Soil Pollution by Heavy Metals]. Moscow, Izd-vo MGU, 2012. 305 p. (in Russian).
2. Dobrovolsky G. V., ed. Degradatsiya i okhrana pochv [Soil Degradation and Protection]. Moscow, Izd-vo MGU, 2002. 654 p. (in Russian).
3. Oborin A. A., Khmurchik V. T., Illarionov S. A., Markarova M. Yu., Nazarov A. V. Neftezagryaznennyye biogeotsenozy (Protsessy obrazovaniya, nauchnyye osnovy vosstanovleniya, mediko-ekologicheskiye problemy) [Oil-contaminated biogeocenoses (Education processes, the scientifi c basis for restoration, medical and environmental problems)]. Perm, Izd-vo Perm. un-ta, 2008. 511 p. (in Russian).
4. Mulligan C. N., Yong R. N., Gibbs B. F. Surfactantenchanced remediation of contaminated soil: a review // Engineering Geology. 2001. Vol. 60. P. 371–380. DOI: https://doi.org/10.1016/S0013-79520000117-4
5. Zabolotskikh V. V., Tankikh S. N., Vasiliev A. V. Technological approaches to detoxifi cation and bioremediation of oil-contaminated lands. Bulletin of the Samara Scientifi c Center of the Russian Academy of Sciences, 2018, vol. 20, no. 5 (3), pp. 341–351 (in Russian).
6. Kurakov A. V., Ilyinsky V. V., Kotelevtsev S. V., Sadchikov A. P. Bioindikatsiya i reabilitatsiya ekosistem prineftyanykh zagryazneniyakh [Bioindication and rehabilitation of ecosystems during oil pollution]. Moscow, Trafi kon Publ., 2006. 336 р. (in Russian).
7. Murzakov B. G. Ekologicheskaya biotekhnologiya dlya neftegazovogo kompleksa [Environmental biotechnology for the oil and gas industry]. Moscow, Izd-vo MGU, 2005. 200 р. (in Russian).
8. Kuppusamy S., Thavamani P., Venkateswarlu K., Lee Y. B., Naidu R., Megharaj M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils : technological constraints, emerging trends and future directions // Chemosphere. 2017. № 168. Р. 944– 968. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.115
9. Xiong B., Zhang Y., Hou Y., Arp H. P. H., Reid B. J., Cai C. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar // Chemosphere. 2017. № 182. P. 316–324. DOI: https://doi.org/10.1016/j.chemosphere.2017.05.020
10. Belousova N. I., Shkidchenko A. N. Destruction of oil products of varying degrees of condensation by microorganisms at low temperatures. Applied Biochemistry and Microbiology, 2004, vol. 40, no. 3, pp. 312–316. (in Russian).
11. Kuznetsov A. E., Gradova N. B. Nauchnyye osnovy ekobiotekhnologii [Scientifi c Foundations of Ecobiotechnology]. Moscow, Mir Publ., 2006. 504 p. (in Russian)
12. PND F 14.1: 2:4.149-99 Metodika vypolneniya izmereniy massovoy kontsentratsii ionov medi, svintsa, kadmiya i tsinka v probakh pit’yevoy, prirodnykh i ochishchennykh stochnykh vod na polyarografe elektrokhimicheskim datchikom “Modul’ EM-04” [PND F 14.1: 2: 4.149-99 Methodology for measuring the mass concentration of copper, lead, cadmium and zinc ions in samples of drinking, natural and purifi ed wastewater on a polarograph using an EM-04 module electrochemical sensor]. Moscow, 2005. Available at: http://docs.cntd.ru/document/437151096 (accessed 20 January 2020). (in Russian).
13. PND F 14.1.272-2012 Metodika (metod) izmereniy massovoy kontsentratsii nefteproduktov v probakh stochnykh vod metodom ik-spektrofotometrii s primeneniyem kontsentratomerov serii KN [PND F 14.1.272-2012 Methodology (method) for measuring the mass concentration of oil products in wastewater samples by IR spectrophotometry using concentrators of the KN series]. Moscow, 2017. Available at: https://files.stroyinf.ru/Data2/1/4293775/4293775499.htm (accessed 20 January 2020) (in Russian).
14. Dementieva N. A., Shurshalova N. F., Nechaeva O. V., Kameneva V. V. Izucheniye mikrobnogo sostava ilovykh osadkov i vybor naiboleye perspektivnykh shtammov bakteriy-destruktorov [The study of the microbial composition of sludge and the selection of the most promising strains of bacteria-destructors]. Nauchnyye trudy natsional’nogo parka “Khvalynskiy”: sb. nauch. st. po materialam IV Mezhdunar. nauchn.-prakt. konf. [Scientifi c works of the national park “Khvalynsky”: coll. of sci. art. on the materials of the IV International scientifi c-practical conference]. Saratov, Khvalynsk, OOO “Amirit” Publ., 2017, pp. 103–107 (in Russian).
15. Filippov I. D., Shurshalova N. F., Peterson A. M. Antagonistic activity of Bacillus pumilus strains isolated from spent activated sludge in relation to sanitary-signifi cant microorganisms. Trends in the Development of Science and Education, 2019, no. 51, part 6, pp. 30–33 (in Russian).