Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)

Full text:
(downloads: 258)
Article type: 

Application of Mathematical Model of Adsorber for the Development and Optimization of Adsorption Modes

Nikiforov I. A., Saratov State University
Krivonosov A. A., Saratov State University
Nikiforov Alexander I., Lomonosov Moscow State University
Chesnokov Evgenij A., Lomonosov Moscow State University

A mathematical model of the adsorber was developed using the Toth equation. Microporous mordenite was synthesized to confirm model validation. The structure and characteristics of the obtained sorbent were confirmed by SEM, N2 adsorbtion, XRD and XRF methods. Adsorption of the hydrogen-methane mixture on H-form of synthesized mordenite was carried out at the pressure of 2 MPa and the temperature range of 20–35 °С. Based on the mathematical model of the adsorber, the possibility of developing a process for separating a mixture of hydrogen and methane at high pressure was shown.

  1. Auerbach S. M., Carrado K. A., Dutta P. K. Handbook of Zeolite Science and Technology. N.Y. : CRC Press, 2003. 1204 p. DOI: https://doi.org/10.1201/9780203911167
  2. Krivonosov A. A., Agafonov S. A., Muchkaev V. Yu., Kolokin A. A., Nikiforov I. A. Application of the Universal Training Complex Software for Increasing Training Effi ciency for the Personnel of Chemical and Petrochemical Plants. Occupational Safety in Industry, 2020, iss. 3, pp. 86–92 (in Russian). DOI: https://doi.org/24000/0409-2961-2020-3-86-92
  3. Nikiforov I. A., Krivonosov A. A. Modelling of Drying Process of Natural Gas at a Pressure of 20–25 MPa through Aluminogel and NaA 4A Zeolite. Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2017, vol. 17, iss. 2, pp. 166–169 (in Russian). DOI: https://doi.org/10.18500/1816-9775-2017-17-2-166-169
  4. Delgado J. A., Uguina M. A., Gomez J. M. Adsorption equilibrium of carbon dioxide, methane and nitrogen onto mordenite at high pressures // Studies in Surface Science and Catalysis. 2005. Vol. 158. P. 1065–1072. DOI: https://doi.org/10.1016/ S0167-2991(05)80449-5
  5. Jafari T. B., Jafari Z. B. A new study on asphaltene adsorption in porous media // Petroleum & Coal. 2014. Vol. 56. P. 459–466.
  6. Peng D. Y., Robinson D. B. A New Two-Constant Equation of State // Industrial & Engineering Chemistry Fundamentals. 1976. Vol. 15. P. 59–64.
  7. Soave G. Equilibrium constants from a modifi ed RedkhKwong equation of state // Chemical Engineering Science. 1972. Vol. 27. P. 1197–1203.
  8. Delgado J. A., Uguina M. A., Gomez J. M., Ortega L. Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures // Separation and Purifi cation Technology. 2006. Vol. 48. P. 223–228. DOI: https://doi.org/10.1016/j.seppur.2005.07.027
  9. Bari H. A. A., Mohammed A. H. A. K., Shua’ab A. K. M., Yunus R. M. B. Equilibrium Adsorption of Hydrogen and Methane on 5A Molecular Sieve // American Journal of Engineering and Applied Sciences. 2008. Vol. 1. P. 157–160. DOI: https://doi.org/10.3844/ajeassp.2008.157.160
  10. Choi S., Drese J. H., Jones C. W. Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources // Chem. Sus Chem. 2009. Vol. 2. P. 796–854. DOI: https://doi.org/10.1002/cssc.200900036
  11. Brea P., Delgado J. A., Agueda V. I., Gutierrez P., Uguina M. A. Multicomponent adsorption of H2, CH4, CO and CO2 in zeolites NaX, CaX and MgX. Evaluation of performance in PSA cycles for hydrogen purifi cation // Microporous and Mesoporous Materials. 2019. Vol. 286. P. 187–198. DOI: https://doi.org/10.1016/j.micromeso.2019.05.021