For citation:
Salishcheva O. V., Ворошилин Р. А. From traditional adsorption processes to bioremediation: Modern technologies for purifying natural waters from pollutants. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2025, vol. 25, iss. 2, pp. 205-234. DOI: 10.18500/1816-9775-2025-25-2-205-234, EDN: XCETOK
From traditional adsorption processes to bioremediation: Modern technologies for purifying natural waters from pollutants
The relevance of the study is determined by the fact that human activity has led to an increase in the anthropogenic impact on the environment. Various pollutants from a large number of discharges of municipal, industrial and medical wastewater are ubiquitous in the natural aquatic environment. Emerging pollutants are synthetic or naturally occurring chemicals or any microorganisms that are not normally monitored in the environment. But emerging pollutants may enter the environment and cause known or suspected adverse environmental or human health eff ects. The complexity of using traditional methods of natural water treatment is associated with the problems of scaling up treatment systems and regenerating or disposing of by-products. Most of the research on the purifi cation of natural water bodies in recent years has focused on the use of phase change processes, including adsorption in various solid matrices and ion exchange, the use of membrane fi ltration, phytotechnology, chemical and biological treatment methods, and advanced oxidation processes. High effi ciency is shown by adsorption purifi cation of water bodies using combined natural fi ltration systems, in which physical processes of sorption and chemical processes of biodegradation are combined. An eff ective ecological and engineering solution is the restoration of freshwater bodies using artifi cially created fl oating wetlands. The advantage of biological methods as the most used and successful, due to their high effi ciency and environmental friendliness, is shown. A review of current technologies available to remove emerging pollutants from water ecosystems showed that diff erent physical, chemical and biological processes are involved. The development of scientifi c research on the prevalence of hazardous pollutants in the environment is the result of the increased attention of scientists to environmental problems aimed at promoting a more rational use of natural resources.
- Kumar R., Qureshi M., Vishwakarma D. K., Al-Ansari N., Kuriqi A., Elbeltagi A., Saraswat A. A review on emerging water contaminants and the application of sustainable removal technologies // Case Stud. Chem. Environ. Eng. 2022. Vol. 6. Art. 100219. https://doi.org/10.1016/j.cscee.2022.100219
- Li P., Wu J. Drinking water quality and public health // Exposure and Health. 2019. Vol. 11, № 4. P. 73–79. https://doi.org/10.1007/s12403-019-00299-8
- Lin L., Deng Z. Q., Gang D. D. Nonpoint source pollution // Water Environ. Res. 2009. Vol. 81, № 10. P. 1996–2018. https://doi.org/10.2175/106143009X12445568400610
- Khan M.N., Mohammad F. Eutrophication: Сhallenges and solutions // Eutrophication: Causes, Consequences and Control. 2014. Vol. 2. P. 1–15. https://doi.org/10.13140/2.1.3673.8884
- Weber R., Watson A., Forter M., Oliaei F. Persistent organic pollutants and landfills-a review of past experiences and future challenges // Waste Manage. Res. 2011. Vol. 29, № 1. P. 107–121. https://doi.org/10.1177/0734242X10390730
- Kazlauskienė N., Svecevičius G., Marciulioniene D., Montvydiene D., Kesminas V., Staponkus R., Taujanskis E., Sluckaite A. The effect of persistent pollutants on aquatic ecosystem: A complex study // 2012 IEEE/OES Baltic International Symposium (BALTIC). IEEE, 2012. P. 1–6. https://doi.org/10.1109/BALTIC.2012.6249198
- Verla A. W., Verla E. N., Amaobi C. E., Enyoh C. E. Water pollution scenario at river Uramurukwa flowing through Owerri metropolis, Imo state, Nigeria // Int. J. Advanced Sci. Res. 2018. Vol. 3, № 3. P. 40–46.
- Jadia C. D., Fulekar M. H. Phytoremediation of heavy metals: Recent techniques // African J. Biotechnol. 2009. Vol. 8, № 6. P. 921–928.
- Bouwman H. POPs in southern Africa // Persistent Organic Pollutants / ed. H. Fiedler. The Handbook of Environmental Chemistry. Vol. 30. Berlin ; Heidelberg : Springer, 2003. P. 297–320. https://doi.org/10.1007/10751132_11
- Ali S., Abbas Z., Rizwan M., Zaheer I. E., Yavas I., Ünay A., Abdel-Daim M. M., Bin-Jumah M., Hasanuzzaman M., Kalderis D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review // Sustainability (Switzerland). 2020. Vol. 12, № 5. Art. 1927. https://doi.org/10.3390/su12051927
- Tchounwou P. B., Yedjou C. G., Patlolla A. K., Sutton D. J. Heavy metal toxicity and the environment // Molecular, Clinical and Environmental Toxicology. 2012. Vol. 101. P. 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
- Ashraf S., Ali Q., Zahir Z. Ah., Ashraf S., Asghar H. N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils // Ecotoxicol. Environ. Saf. 2019. Vol. 174. P. 714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068
- Kaledin A. P., Stepanova M. V. Bioaccumulation of trace elements in vegetables grown in various anthropogenic conditions // Foods and Raw Materials. 2023. Vol. 11, № 1. P. 10–16. https://doi.org/10.21603/2308-4057-2023-1-551
- Petrie B., Barden R., Kasprzyk-Horder B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring // Water Res. 2015. Vol. 72. P. 3–27. https://doi.org/10.1016/j.watres.2014.08.053
- Schwarzenbach R. P., Gschwend P. M., Imboden D. M. Environmental organic chemistry. Hoboken, New Jersey : John Wiley & Sons, 2016. 1024 p.
- Petrie B., McAdam E. J., Lester J. N., Cartmell E. Obtaining process mass balances of pharmaceuticals and triclosan to determine their fate during wastewater treatment // Sci. Total Environ. 2014. Vol. 497. P. 553–560. https://doi.org/10.1016/j.scitotenv.2014.08.003
- Hashmi Z., Jatoi A.S., Nadeem S., Anjum A., Imam S. M., Jangda H. Comparative analysis of conventional to biomass-derived adsorbent for wastewater treatment: A review // Biomass Conversion and Biorefinery. 2022. Vol. 14. P. 45–76. https://doi.org/10.1007/s13399-022-02443-y
- Chiang Y. C., Juang R. S. Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review // J. Taiwan Institute Chem. Eng. 2017. Vol. 71. P. 214–234. https://doi.org/10.1016/j.jtice.2016.12.014
- Marques S., Marcuzzo J., Baldan M., Mestre A., Carvalho A. Pharmaceuticals removal by activated carbons: Role of morphology on cyclic thermal regeneration // Chem. Eng. J. 2017. Vol. 321. P. 233–244. https://doi.org/10.1016/j.cej.2017.03.101
- Rodriguez-Narvaez O. M., Peralta-Hernandez J. M., Goonetilleke A., Bandala E. R. Treatment technologies for emerging contaminants in water: A review // Chem. Eng. J. 2017. Vol. 323. P. 361–380. https://doi.org/10.1016/j.cej.2017.04.106
- Xiang Y., Xu Z., Wei Y., Zhou Y., Yang X., Yang Y., Yang J., Zhang J., Luo L., Zhou Z. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors // J. Environ. Manage. 2019. Vol. 237. P. 128–138. https://doi.org/10.1016/j.jenvman.2019.02.068
- Dutta S., Gupta B., Srivastava S. K., Gupta A. K. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review // Materials Advances. 2021. Vol. 2 (14). P. 4497–4531. https://doi.org/10.1039/D1MA00354B
- Кутергин А. С., Недобух Т. А., Никифоров А. Ф., Зенкова К. И., Тарасовских Т. В. Сорбционное извлечение радионуклидов стронция из поверхностных вод природным алюмосиликатом // Водное хозяйство России: проблемы, технологии, управление. 2021. № 4. С. 118–134. https://doi.org/10.35567/1999-4508-2021-4-7
- Gupta R., Pathak D. D. Surface functionalization of mesoporous silica with maltodextrin for efficient adsorption of selective heavy metal ions from aqueous solution // Colloids Surf. A: Physicochemical Eng. Aspects. 2021. Vol. 631. Art. 127695. https://doi.org/10.1016/j.colsurfa.2021.127695
- San Miguel G., Lambert S. D., Graham N. J. D. A practical review of the performance of organic and inorganic adsorbents for the treatment of contaminated waters // J. Chem. Technol. Biotechnol.: Int. Res. in Process, Environ. and Clean Technology. 2006. Vol. 81, № 10. P. 1685–1696. https://doi.org/10.1002/jctb.1600
- Awad A. M., Shaikh S. M., Jalab R., Gulied M. H., Nasser M. S., Benamor A., Adham S. Adsorption of organic pollutants by natural and modified clays: A comprehensive review // Sep. Purif. Technol. 2019. Vol. 228. Art. 115719. https://doi.org/10.1016/j.seppur.2019.115719
- Es-sahbany H., Hsissou R., El Hachimi M. L., Allaoui M., Nkhili S., Elyoubi M. S. Investigation of the adsorption of heavy metals (Cu, Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco) // Mater. Today: Proceedings. 2021. Vol. 45, № 8. P. 7290–7298. https://doi.org/10.1016/j.matpr.2020.12.1100
- Chaukura N., Gwenzi W., Tavengwa N., Manyuchi M. M. Biosorbents for the removal of synthetic organics and emerging pollutants: Opportunities and challenges for developing countries // Environ. Development. 2016. Vol. 19. P. 84–89. https://doi.org/10.1016/j.envdev.2016.05.002
- Sadeek S., Negm N., Hefni H., Abdel Wahab M. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures // Int. J. Boil. Macromol. 2015. Vol. 81. P. 400–409. https://doi.org/10.1016/j.ijbiomac.2015.08.031
- Zeraatkar A. K., Ahmadzadeh H., Talebi A. F., Moheimani N. R., McHenry M. P. Potential use of algae for heavy metal bioremediation, a critical review // J. Environ. Manage. 2016. Vol. 181. P. 817–831. https://doi.org/10.1016/j.jenvman.2016.06.059
- Alekseeva O. V., Bagrovskaya N. A., No skov A. V. The sorption activity of a cellulose–fullerene composite relative to heavy metal ions // Prot. Met. and Physical Chem. Surf. 2019. Vol. 55, № 1. P. 15–20. https://doi.org/10.1134/S2070205119010027
- Дремичева Е. С. Использование торфа и древесных опилок для очистки сточных вод от ионов тяжелых металлов // Вестник Научного центра промышленной и экологической безопасности [Вестник НЦ ВостНИИ]. 2021. № 3. P. 80–91. https://doi.org/10.25558/VOSTNII.2021.74.78.009
- Gorgievski M., Bozić D., Stanković V., Strbac N., Serbula S. Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw // Ecolog. Eng. 2013. Vol. 58. P. 113–122. https://doi.org/10.1016/j.ecoleng.2013.06.025
- Imamoglu M., Yıldız H., Altundag H., Turhan Y. Efficient removal of Cd(II) from aqueous solution by dehydrated hazelnut husk carbon // J. Dispersion Sci. Technol. 2015. Vol. 36, № 2. P. 284–290. https://doi.org/10.1080/01932691.2014.890109
- Jalali M., Aboulghazi F. Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions // J. Mater. Cycles Waste Manage. 2013. Vol. 15. P. 548–555. https://doi.org/10.1007/s10163-012-0096-3
- Priya A. K., Yogeshwaran V., Rajendran S., Hoang T. K. A., Soto-Moscoso M., Ghfar A. A., Bathula Ch. Investigation of mechanism of heavy metals (Cr6+, Pb2+ and Zn2+) adsorption from aqueous medium using rice husk ash: Kinetic and thermodynamic approach // Chemosphere. 2022. Vol. 286, № 3. Art. 131796. https://doi.org/10.1016/j.chemosphere.2021.131796
- Wang J., Chen C. Biosorbents for heavy metals removal and their future // Biotechnol. Adv. 2009. Vol. 27, № 2. P. 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002
- Воронина А. В., Чайкина Т. И., Никифоров А. Ф., Дрикер Б. Н., Вураско А. В., Фролова Е. И. Сорбенты на основе технической целлюлозы для очистки радиоактивно-загрязненных вод и реабилитации природных водоемов // Водное хозяйство России. 2013. № 5. С. 45–53.
- Dremicheva E. S. Problems of pollution of water bodies with oil-containing wastewater of industrial enterprises and options for their solution // Chem. Safety Sci. 2021. Vol. 5, № 1. P. 66–77. https://doi.org/10.25514/CHS.2021.2.20003
- Долгополова О. Н., Худоёрова З. Д. Современные технологии очистки водоемов от нефтезагрязненных донных отложений с использованием геоконтейнеров // Разведка и охрана недр. 2020. № 6. С. 75–76.
- Смоляков Б. С., Ермолаева Н. И., Романов Р. Е., Сагидуллин А. К. Отклик планктонных сообществ на ремедиацию водоема, загрязненного тяжелыми металлами: полевой эксперимент // Вода и экология: проблемы и решения. 2020. № 2 (82). С. 104–113. https://doi.org/10.23968/2305-3488.2020.25.2.104-113
- Патент RU 2437847 C1. Система биологической фильтрации искусственных и природных водоемов / В. В. Ионов, О. А. Ромина. Заявка: 2010134598/05, 19.08.2010, опубл. 27.12.2011.
- Nghiem L. D., Schäfer A. I., Elimelech M. Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms // Environ. Sci. Technol. 2004. Vol. 38. P. 1888–1896. https://doi.org/10.1021/es034952r
- Schäfer A. I., Akanyeti I., Semião A. J. C. Micropollutant sorption to membrane polymers: A review of mechanisms for estrogens // Adv. Colloid Interface Sci. 2011. Vol. 164. Р. 100–117. https://doi.org/10.1016/j.cis.2010.09.006
- Derlon N., Koch N., Eugster B., Posch Th., Pernthaler J., Pronk W., Morgenroth E. Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration // Water Res. 2013. Vol. 47, iss. 6. P. 2085–2095. https://doi.org/10.1016/j.watres.2013.01.033
- Tang X., Xie B., Chen R., Wang J., Huang K., Zhu X., Li G., Liang H. Gravity-driven membrane filtration treating manganese-contaminated surface water: Flux stabilization and removal performance // Chem. Eng. J. 2020. Vol. 397. Р. 125248. https://doi.org/10.1016/j.cej.2020.125248
- Derlon N., Mimoso J., Klein Th., Koetzsch S., Morgenroth E. Presence of biofilms on ultrafiltration membrane surfaces increases the quality of permeate produced during ultra-low pressure gravity-driven membrane filtration // Water Res. 2014. Vol. 60. P. 164–173. https://doi.org/10.1016/j.watres.2014.04.045
- Peter-Varbanets M., Hammes F., Vital M., Pronk W. Stabilization of flux during dead-end ultra-low pressure ultrafiltration // Water Res. 2010. Vol. 44, № 12. P. 3607–3616. https://doi.org/10.1016/j.watres.2010.04.020
- Sofia A., Ng W. J., Ong S. L. Engineering design approaches for minimum fouling in submerged MBR // Desalination. 2004. Vol. 160, № 1. P. 67–74. https://doi.org/10.1016/S0011-9164(04)90018-5
- Guo X., Jiang Sh., Wang Y., Wang Y., Wang J., Huang T., Liang H., Tang X. Effects of pre-treatments on the filtration performance of ultra-low pressure gravity-driven membrane in treating the secondary effluent: Flux stabilization and removal improvement // Sep. Purif. Technol. 2022. Vol. 303. Art. 122122. https://doi.org/10.1016/j.seppur.2022.122122
- Zhang X., Ma J., Zheng J., Dai R., Wang X., Wang Zh. Recent advances in nature-inspired antifouling membranes for water purification // Chem. Eng. J. 2022. Vol. 432. Art. 134425. https://doi.org/10.1016/j.cej.2021.134425
- Kim L. H., Lee D., Oh J., Kim S., Chae S.-Ha, Youn D., Kim Y. Performance of a novel granular activated carbon and gravity-driven membrane hybrid process: Process development and removal of emerging contaminants // Process Saf. Environ. Prot. 2022. Vol. 168. P. 810–819. https://doi.org/10.1016/j.psep.2022.10.067
- Caldwell J., Taladriz-Blanco P., Lehner R., Lubskyy A., Diego Ortuso R., Rothen-Rutishauser B., Petri-Fink A. The micro-, submicron-, and nanoplastic hunt: A review of detection methods for plastic particles // Chemosphere. 2022. Vol. 293. Art. 133514. https://doi.org/10.1016/j.chemosphere.2022.133514
- Ansari A. A., Naeem M., Gill S. S., AlZuaibr F. M. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application // The Egyptian J. Aquatic Res. 2020. Vol. 46, № 4. P. 371–376. https://doi.org/10.1016/j.ejar.2020.03.002
- Favas P. J. C., Pratas J., Rodrigues N., D'Souza R., Varun M., Paul M. S. Metal(loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting // Chemosphere. 2018. Vol. 194. P. 158–170. https://doi.org/10.1016/j.chemosphere.2017.11.139
- Vidal C. F., Oliveira J. A., da Silva A. A., Ribeiro C., Farnese F. D. S. Phytoremediation of arsenite-contaminated environments: Is Pistia stratiotes L. a useful tool? // Ecological Indicators. 2019. Vol. 104. P. 794–801. https://doi.org/10.1016/j.ecolind.2019.04.048
- Yadav K. K., Gupta N., Kumar A., Reecec L. M., Singh N., Rezania S., Khan S. A. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects // Ecological Eng. 2018. Vol. 120. P. 274–298. https://doi.org/10.1016/j.ecoleng.2018.05.039
- Agarwal P., Rani R. Strategic management of contaminated water bodies: Omics, genome-editing and other recent advances in phytoremediation // Environ. Technol. Innovation. 2022. Vol. 27. P. 102463. https://doi.org/10.1016/j.eti.2022.102463
- Prasad M. N. Aquatic plants for phytotechnology // Environmental Bioremediation Technologies / eds. S. N. Singh, R. D. Tripathi. Berlin, Heidelberg: Springer, 2007. P. 259–274. https://doi.org/10.1007/978-3-540-34793-4_11
- Koźmińska A., Wiszniewska A., Hanus-Fajerska E., Muszyńska E. Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants // Plant Biotechnol. Rep. 2018. Vol. 12. P. 1–14. https://doi.org/10.1007/s11816-017-0467-2
- Carolin C. F., Kumar P. S., Saravanan A., Joshiba G. J., Naushad Mu. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review // J. Environ. Chem. Eng. 2017. Vol. 5, № 3. P. 2782–2799. https://doi.org/10.1016/j.jece.2017.05.029
- Fasani E. Plants that hyperaccumulate heavy metals // Plants and Heavy Metals / ed. A. Furini. Dordrecht: Springer, Ser. SpringerBriefs in Molecular Science, 2012. P. 55–74. https://doi.org/10.1007/978-94-007-4441-7_3
- Sarma H. Metal hyperaccumulation in plants: A review focusing on phytoremediation technology // J. Environ. Sci. and Tech. 2011. Vol. 4, № 2. P. 118–138.
- Zhang T., Lu Q., Su C., Yang Y., Hu D., Xu Q. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor) // Ecotoxicol. Environ. Saf. 2017. Vol. 143. P. 46–56. https://doi.org/10.1016/j.ecoenv.2017.04.058
- Leao G. A., de Oliveira J. A., Felipe R. T. A., Farnese F. S., Gusman G. S. Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic // J. Plant Int. 2014. Vol. 9. P. 143–151. https://doi.org/10.1080/17429145.2013.784815
- Ekperusi A. O., Sikoki F. D., Nwachukwu E. O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective // Chemosphere. 2019. Vol. 223. P. 285–309. https://doi.org/10.1016/j.chemosphere.2019.02.025
- Prasad M. N., Freitas H. M. Metal hyperaccumulation in plants: Biodiversity prospecting for phytoremediation technology // Electron. J. Biotechnol. 2003. Vol. 6, № 3. P. 285–321. https://doi.org/10.2225/vol6-issue3-fulltext-6
- Upadhyay A. R., Tripathi B. D. Principle and process of biofiltration of Cd, Cr, Co, Ni & Pb from tropical opencast coalmine effluent // Water, Air, and Soil Pollution. 2007. Vol. 180. P. 213–223. https://doi.org/10.1007/s11270-006-9264-1
- Mkandawire M., Dudel E. G. Are Lemna spp. effective phytoremediation agents // Bioremediation, Biodiversity and Bioavailability. 2007. Vol. 1, № 1. P. 56–71.
- Sharma S., Singh B., Manchanda V. K. Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water // Environ. Sci. Pollut. Res. Int. 2015. Vol. 22, № 2. P. 946–962. https://doi.org/10.1007/s11356-014-3635-8
- Bhaskaran K., Nadaraja A.V., Tumbath S., Shah L. B., Puthiya Veetil P. G. Phytoremediation of perchlorate by free floating macrophytes // J. Hazard. Mater. 2013. Vol. 260. P. 901–906. https://doi.org/10.1016/j.jhazmat.2013.06.008
- Liu N., Wu Z. Toxic effects of linear alkylbenzene sulfonate on Chara vulgaris L. // Environ. Sci. Pollution Res. 2018. Vol. 25. P. 4934–4941. https://doi.org/10.1007/s11356-017-0883-4
- Liu Y., Liu N., Zhou Y., Wang F., Zhang Y., Wu Z. Growth and physiological responses in Myriophyllum spicatum L. exposed to linear alkylbenzene sulfonate // Environ. Toxicol. Chem. 2019. Vol. 38, № 9. P. 2073–2081. https://doi.org/10.1002/etc.4475
- Wu Z., Yu D., Li J., Wu G., Niu X. Growth and antioxidant response in Hydrocharis dubis (Bl.) Backer exposed to linear alkylbenzene sulfonate // Ecotoxicology. 2010. Vol. 19. P. 761–769. https://doi.org/10.1007/s10646-009-0453-8
- Khataee A. R. Phytoremediation potential of duckweed (Lemna minor L.) in degradation of CI Acid Blue 92: Artificial neural network modeling // Ecotoxicol. Environ. Saf. 2012. Vol. 80. P. 291–298.
- Neag E., Malschi D., Măicăneanu A. Isotherm and kinetic modelling of Toluidine Blue (TB) removal from aqueous solution using Lemna minor // Int. J. Phytorem. 2018. Vol. 20, № 10. P. 1049–1054. https://doi.org/10.1080/15226514.2018.1460304
- Yaseen D. A., Scholz M. Comparison of experimental ponds for the treatment of dye wastewater under controlled and semi-natural conditions // Environ. Sci. Pollution Res. 2017. Vol. 24. P. 16031–16040. https://doi.org/10.1007/s11356-017-9245-5
- Makarova A., Pishchaeva K., Chelnokov V., Matasov A., Saproshina A., Varbanov P. S. Evaluation of the effectiveness of the use of carbon fibres using salt of ethylenediaminetetraacetic acid for the purification of water bodies from heavy metals // Cleaner Eng. Technol. 2022. Vol. 10. Art. 100549. https://doi.org/10.1016/j.clet.2022.100549
- Newcomb B. A. Processing, structure, and properties of carbon fibres // Composites Part A: Appl. Sci. and Manufacturing. 2016. Vol. 91. P. 262–282. https://doi.org/10.1016/j.compositesa.2016.10.018
- Shalygina T. A., Voronina S. Yu., Voronchikhin V. D., Vlasov A. Yu., Ovchinnikov A. N., Grotskaya N. N. Data for determining the surface properties of carbon fiber in contact interaction with polymeric binders // Data Brief. 2021. Vol. 35. Art. 106847. https://doi.org/10.1016/j.dib.2021.106847
- Saleem M. H., Ali S., Kamran M., Iqbal N., Azeem M., Tariq Javed M., Ali Q., Zulqurnain Haider M., Irshad S., Rizwan M., Alkahtani S., M Abdel-Daim M. Ethylenediaminetetraacetic acid (EDTA) mitigates the toxic effect of excessive copper concentrations on growth, gaseous exchange and chloroplast ultrastructure of Corchorus capsularis L. and improves copper accumulation capabilities // Plants. 2020. Vol. 9, № 6. P. 756. https://doi.org/10.3390/plants9060756
- Zakaria Z., Zulkafflee N. S., Mohd Redzuan N. A., Selamat J., Ismail M. R., Praveena S. M., Tóth G., Abdull Razis A. F. Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks // Plants. 2021. Vol. 10, № 6. P. 1070. https://doi.org/10.3390/plants10061070
- Jia X. Q., Li S. Y., Miu H. J., Yang T., Rao K., Wu D. Y., Cui B. L., Ou J. L., Zhu Z. C. Carbon nanomaterials: A new sustainable solution to reduce the emerging environmental pollution of turbomachinery noise and vibration // Front. Chem. 2020. Vol. 8. Art. 683. https://doi.org/10.3389/fchem.2020.00683
- Sinha R. K., Herat S., Tandon P. K. Phytoremediation: Role of plants in contaminated site management // Environmental Bioremediation Technologies / eds. S. N. Singh, R. D. Tripathi. Berlin, Heidelberg: Springer, 2007. P. 315–330. https://doi.org/10.1007/978-3-540-34793-4_14
- Obinna I. B., Ebere E. C. Phytoremediation of polluted waterbodies with aquatic plants: Recent progress on heavy metal and organic pollutants // Anal. Methods in Environ. Chem. J. 2019. Vol. 2. P. 66–104. https://doi.org/10.24200/amecj.v2.i03.66
- Tangahu B. V., Abdullah S. R. S., Basri H., Idris M., Anuar N., Mukhlisin M. A Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation // Int. J. Chem. Eng. 2011. Vol. 31. Art. 939161. https://doi.org/10.1155/2011/939161
- Erdei L. Phytoremediation as a program for decontamination of heavy metal polluted environment // Acta Biologica Szegediensis. 2005. Vol. 49, № 1-2. P. 75–76.
- DalCorso G., Fasani E., Manara A., Visioli G., Furini A. Heavy metal pollutions: State of the art and innovation in phytoremediation // Int. J. Mol. Sci. 2019. Vol. 20, № 14. P. 3412. https://doi.org/10.3390/ijms20143412
- Bi R., Zhou C., Jia Y., Wang S., Li P., Reichwaldt E. S., Liu W. Giving waterbodies the treatment they need: A critical review of the application of constructed floating wetlands // J. Environ Manage. 2019. Vol. 238. P. 484–498. https://doi.org/10.1016/j.jenvman.2019.02.064
- Pavlidis G., Zotou I., Karasali H., Marousopoulou A., Bariamis G., Nalbantis I., Tsihrintzis V. A. Experiments on pilot-scale constructed floating wetlands efficiency in removing agrochemicals // Toxics. 2022. Vol. 10, № 12. Art. 790. https://doi.org/10.3390/toxics10120790
- Stefani G., Tocchetto D., Salvato M., Borin M. Performance of a floating treatment wetland for in-stream water amelioration in NE Italy // Hydrobiologia. 2011. Vol. 674. P. 157–167. https://doi.org/10.1007/s10750-011-0730-4
- Billore S., Prashant K., Sharma J. K. Restoration and conservation of stagnant water bodies by gravel-bed treatment wetlands and artificial floating reed beds in tropical India // Proceedings of Taal2007: The 12th World Lake Conference / eds. M. Sengupta, R. Dalwani. Jaipur, India, 2008. P. 981–987.
- Jyoti D., Sinha R., Faggio C. Advances in biological methods for the sequestration of heavy metals from water bodies: A review // Environ. Toxicol. Pharmacol. 2022. Vol. 94. Art. 103927. https://doi.org/10.1016/j.etap.2022.103927
- Cui E., Zhou Zh., Gao F., Chen H., Li J. Roles of substrates in removing antibiotics and antibiotic resistance genes in constructed wetlands: A review // Sci. Total Environ. 2023. Vol. 859. Art. 160257. https://doi.org/10.1016/j.scitotenv.2022.160257
- Arumugam N., Chelliapan S., Kamyab H., Thirugnana S., Othman N., Nasri N. S. Treatment of wastewater using seaweed: A review // Int. J. Environ. Res. Public Health. 2018. Vol. 15, № 12. Art. 2851. https://doi.org/10.3390/ijerph15122851
- Guzmán-Fierro V., Arriagada C., José Gallardo J., Campos V., Roeckel M. Challenges of aerobic granular sludge utilization: Fast start-up strategies and cationic pollutant removal // Heliyon. 2023. Vol. 9, № 2. Art. e13503. https://doi.org/10.1016/j.heliyon.2023.e13503
- Ahmed M., Zhou J., Ngo H., Guo W., Thomaidis N., Xu J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review // J. Hazardous Materials. 2017. Vol. 323, part A. P. 274–298. https://doi.org/10.1016/j.jhazmat.2016.04.045
- Бикташева Л. Р., Селивановская С. Ю., Мухтарова Р. А., Абдалджалил Х., Галицкая П. Ю. Некоторые характеристики микробного сообщества пластовых флюидов Ромашкинского месторождения // Учен. зап. Казан. ун-та. Сер. Естеств. науки. 2022. Т. 164, кн. 2. С. 263–278. https://doi.org/10.26907/2542-064X.2022.2.263-278
- Zhang T., Zhang H. Microbial consortia are needed to degrade soil pollutants // Microorganisms. 2022. Vol. 10, № 2. Art. 261. https://doi.org/10.3390/microorganisms10020261
- Bilal M., Iqbal H. M. N. Persistence and impact of steroidal estrogens on the environment and their laccase-assisted removal // Sci. Total Environ. 2019. Vol. 690. P. 447–459. https://doi.org/10.1016/j.scitotenv.2019.07.025
- Bilal M., Iqbal H. M. N., Barceló D. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems // Sci. Total Environ. 2019. Vol. 695. Art. 133896. https://doi.org/10.3390/ toxics10120790 10.1016/j.scitotenv.2019.13
- Zdarta J., Meyer A.S., Jesionowski T., Pinelo M. Developments in support materials for immobilization of oxidoreductases: A comprehensive review // Adv. Colloid Interface Sci. 2018. Vol. 258. P. 1–20. https://doi.org/10.1016/j.cis.2018.07.004
- Alneyadi A. H., Rauf M. A., Ashraf S. S. Oxidoreductases for the remediation of organic pollutants in water – a critical review // Crit. Rev. Biotechnol. 2018. Vol. 38. P. 971–988. https://doi.org/10.1080/07388551.2017.1423275
- Zdarta J., Meyer A.S., Jesionowski T., Pinelo M. Multifaceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review // Biotechnol. Adv. 2019. Vol. 37. Art. 107401. https://doi.org/10.1016/j.biotechadv.2019.05.007
- Bilal M., Rasheed T., Iqbal H. M. N., Yan Y. Peroxidases-assisted removal of environmentally-related hazardous pollutants with reference to the reaction mechanisms of industrial dyes // Sci. Total Environ. 2018. Vol. 644. P. 1–13. https://doi.org/10.1016/j.scitotenv.2018.06.274
- Geissen V., Mol H., Klumpp E., Umlauf G., Nadal M., Ploeg M., Zee S., Ritsema C. J. Emerging pollutants in the environment: A challenge for water resource management // Int. Soil Water Conserv. Res. 2015. Vol. 3. P. 57–65. https://doi.org/10.1016/j.iswcr.2015.03.002
- Morsi R., Bilal M., Iqbal H. M. N., Ashraf S. S. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants // Sci. Total Environ. 2020. Vol. 714. Art. 136572. https://doi.org/10.1016/j.scitotenv.2020.136572
- Battistuzzi G., Bellei M., Bortolotti C. A., Sola M. Redox properties of heme peroxidases // Arch. Biochem. Biophys. 2010. Vol. 500. P. 21–36. https://doi.org/10.1016/j.abb.2010.03.002
- Chiong T., Lau S. Y., Lek Z. H., Koh B. Y., Danquah M. K. Enzymatic treatment of methyl orange dye in synthetic wastewater by plant-based peroxidase enzymes // J. Environ. Chem. Eng. 2016. Vol. 4. P. 2500–2509. https://doi.org/10.1016/j.jece.2016.04.030
- Babu D. S., Srivastava V., Nidheesh P. V., Kumar M. S. Detoxification of water and wastewater by advanced oxidation processes // Sci. Total Environ. 2019. Vol. 696. Art. 133961. https://doi.org/10.1016/j.scitotenv.2019.133961
- Quiñones D. H., Álvarez P. M., Rey A., Beltrán F. J. Removal of emerging contaminants from municipal WWTP secondary effluents by solar photocatalytic ozonation. A pilot-scale study // Separation and Purification Technol. 2015. Vol. 149. P. 132–139. https://doi.org/10.1016/j.seppur.2015.05.033
- Haag W. R., Yao C. C. D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants // Environ. Sci. Technol. 1992. Vol. 26, № 5. P. 1005–1013.
- Kanakaraju D., Glass B. D., Oelgemöller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review // J. Environ Manage. 2018. Vol. 219. P. 189–207. https://doi.org/10.1016/j.jenvman.2018.04.103
- Ramírez-Malule H., Quiñones-Murillo D. H., Manotas-Duque D. Emerging contaminants as global environmental hazards. A bibliometric analysis // Emerging Contaminants. 2020. Vol. 6. P. 179–193. https://doi.org/10.1016/j.emcon.2020.05.001
- Coronado J. M., Fresno F., Hernández-Alonso M., Portela R. The Keys of Success: TiO2 as a Benchmark Photocatalyst // Design of Advanced Photocatalytic Mater. for Energy and Environ. Applications. Green Energy and Technology. London: Springer, 2013. P. 85–101.
- Cassano A. E., Alfano O. M. Reaction engineering of suspended solid heterogeneous photocatalytic reactors // Catalysis today. 2000. Vol. 58, № 2-3. P. 167–197.
- Rey A., Quinones D. H., Álvarez P. M., Beltrán F. J., Plucinski P. K. Simulated solar-light assisted photocatalytic ozonation of metoprolol over titania-coated magnetic activated carbon // Appl. Catal. B: Environmental. 2012. Vol. 111. P. 246–253. https://doi.org/10.1016/j.apcatb.2011.10.005
- Quiñones-Murillo D. H., Ariza-Reyes A. A., Ardila-Vélez L. J. Some kinetic and synergistic considerations on the oxidation of the azo compound Ponceau 4R by solar-mediated heterogeneous photocatalytic ozonation // Desalination and Water Treatment. 2019. Vol. 170. P. 61–74. https://doi.org/10.5004/dwt.2019.24711
- Canizares P., Paz R., Sáez C., Rodrigo M. A. Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes // J. Environ. Manag. 2009. Vol. 90, № 1. P. 410–420. https://doi.org/10.1016/j.jenvman.2007.10.010
- Inchaurrondo N. S., Font Clay J. Zeolite and oxide minerals: Natural catalytic materials for the ozonation of organic pollutants // Molecules. 2022. Vol. 27, № 7. Art. 2151. https://doi.org/10.3390/molecules27072151
- Foka-Wembe E. N., Benghafour A., Dewez D., Azzouz A. Clay-catalyzed ozonation of organic pollutants in water and toxicity on Lemna minor: Effects of molecular structure and interactions // Molecules. 2022. Vol. 28, № 1. Art. 222. https://doi.org/10.3390/molecules28010222
- Mirzaei A., Chen Z., Haghighat F., Yerushalmi L. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes – a review // Chemosphere. 2017. Vol. 174. P. 665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019
- Ni Y., Zhou Ch., Xing M., Zhou Y. Oxidation of emerging organic contaminants by in situ H2O2 fenton system // Green Energy and Environ. 2024. Vol. 9, iss. 3. P. 417–434. https://doi.org/10.1016/j.gee.2023.01.003
- Zhou Z., Liu X., Sun K., Lin C., Ma J., He M., Ouyang W. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review // Chem. Eng. J. 2019. Vol. 372. P. 836–851. https://doi.org/10.1016/j.cej.2019.04.213
- Shiying Y., Ping W., Xin Y., Guang W.E., Zhang W., Liang S. H. A novel advanced oxidation process to degrade organic pollutants in waste water: Microwave-activated persulfate oxidation // J. Environ. Sci. 2009. Vol. 21, № 9. P. 1175–1180. https://doi.org/10.1016/s1001-0742(08)62399-2
- Tan C., Gao N., Deng Y., An N., Deng J. Heat-activated persulfate oxidation of diuron in water // Chem. Eng. J. 2012. Vol. 203. P. 294–300. https://doi.org/10.1016/j.cej.2012.07.005
- Torres-Palma R. A., Serna-Galvis E. A. Sonolysis // Advanced oxidation processes for waste water treatment: Emerging green chemical technology / eds. S. A. Ameta, R. Ameta. Elsevier, Academic press, 2018. P. 177–213. https://doi.org/10.1016/B978-0-12-810499-6.00007-3
- Huerta-Fontela M., Galceran M. T., Ventura F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment // Water Res. 2011. Vol. 45. P. 1432–1442. https://doi.org/10.1016/j.watres.2010.10.036
- Suarez S., Lema J. M., Omil F. Pre-treatment of hospital wastewater by coagulation–flocculation and flotation // Bioresour. Technol. 2009. Vol. 100. P. 2138–2146. https://doi.org/10.1016/j.biortech.2008.11.015
- Adams C., Wang Y., Loftin K., Meyer M. Removal of antibiotics from surface and distilled water in conventional water treatment processes // J. Environ. Eng. 2002. Vol. 128. P. 253–260. https://doi.org/10.1061/(asce)0733-9372(2002)128:3(253)
- Zhou J., Jia Y., Liu H. Coagulation/flocculation-flotation harvest of Microcystis aeruginosa by cationic hydroxyethyl cellulose and Agrobacterium mucopolysaccharides // Chemosphere. 2023. Vol. 313. Art. 137503. https://doi.org/10.1016/j.chemosphere.2022.137503
- Peydayesh M., Suta T., Usuelli M., Handschin S., Canelli G., Bagnani M., Mezzenga R. Sustainable removal of microplastics and natural organic matter from water by coagulation-flocculation with protein amyloid fibrils // Environ. Sci. Technol. 2021. Vol. 55, № 13. P. 8848–8858. https://doi.org/10.1021/acs.est.1c01918
- Kaur I., Batra V., Kumar Reddy Bogireddy N., Torres Landa S. D., Agarwal V. Detection of organic pollutants, food additives and antibiotics using sustainable carbon dots // Food Chemistry. 2023. Vol. 406. Art. 135029. https://doi.org/10.1016/j.foodchem.2022.135029