Известия Саратовского университета. Новая серия.

Серия Химия. Биология. Экология

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


Для цитирования:

Салищева О. В., Ворошилин Р. А. От традиционных процессов адсорбции до биоремедиации: современные технологии очистки природных вод от загрязнителей // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2025. Т. 25, вып. 2. С. 205-234. DOI: 10.18500/1816-9775-2025-25-2-205-234, EDN: XCETOK

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 400)
Язык публикации: 
русский
Рубрика: 
Тип статьи: 
Научная статья
УДК: 
504.4.054+628.16
EDN: 
XCETOK

От традиционных процессов адсорбции до биоремедиации: современные технологии очистки природных вод от загрязнителей

Авторы: 
Салищева Олеся Владимировна, федеральное государственное бюджетное образовательное учреждение высшего образования «Кемеровский государственный университет»
Ворошилин Роман Алексеевич, федеральное государственное бюджетное образовательное учреждение высшего образования «Кемеровский государственный университет»
Аннотация: 

Актуальность исследования определяется тем, что деятельность человека привела к усилению антропогенного воздействия на окружающую среду. Различные загрязняющие вещества из большого количества сбросов коммунальных, производственных и медицинских сточных вод повсеместно распространены в природной водной среде. Новые загрязнители – это синтетические или природные химические вещества или любые микроорганизмы, которые обычно не контролируются в окружающей среде. Однако возникающие загрязнители могут попадать в окружающую среду и вызывать известные или предполагаемые неблагоприятные последствия для окружающей среды или здоровья человека. Сложность использования традиционных методов очистки природных вод связана с проблемами масштабирования систем очистки и регенерации или утилизации побочных продуктов. Большая часть исследований по очистке природных водоемов в последние годы сосредоточена на использовании процессов фазового перехода, включая адсорбцию в различных твердых матрицах и ионный обмен, применение мембранной фильтрации, фитотехнологии, химических и биологических методов очистки, а также усовершенствованные процессы окисления. Высокую эффективность показывает адсорбционная очистка водных объектов с использованием комбинированных природных фильтрационных систем, в которых сочетаются физические процессы сорбции и химические процессы биодеградации. Эффективным экологическим и инженерным решением является восстановление пресных водоемов с использованием искусственно созданных плавучих водно-болотных угодий. Показано преимущество биологических методов как наиболее используемых и успешных, что обусловлено их высокой эффективностью и экологичностью. Обзор имеющихся в настоящее время технологий удаления новых загрязнителей из водных экосистем показал, что в технологии задействованы различные физические, химические и биологические процессы. Развитие научных исследований о распространенности опасных загрязнителей в окружающей среде является результатом повышенного внимания ученых к экологическим проблемам, направленного на содействие более рациональному использованию природных ресурсов.

Список источников: 
  1. Kumar R., Qureshi M., Vishwakarma D. K., Al-Ansari N., Kuriqi A., Elbeltagi A., Saraswat A. A review on emerging water contaminants and the application of sustainable removal technologies // Case Stud. Chem. Environ. Eng. 2022. Vol. 6. Art. 100219. https://doi.org/10.1016/j.cscee.2022.100219  
  2. Li P., Wu J. Drinking water quality and public health // Exposure and Health. 2019. Vol. 11, № 4. P. 73–79. https://doi.org/10.1007/s12403-019-00299-8  
  3. Lin L., Deng Z. Q., Gang D. D. Nonpoint source pollution // Water Environ. Res. 2009. Vol. 81, № 10. P. 1996–2018. https://doi.org/10.2175/106143009X12445568400610  
  4. Khan M.N., Mohammad F. Eutrophication: Сhallenges and solutions // Eutrophication: Causes, Consequences and Control. 2014. Vol. 2. P. 1–15. https://doi.org/10.13140/2.1.3673.8884  
  5. Weber R., Watson A., Forter M., Oliaei F. Persistent organic pollutants and landfills-a review of past experiences and future challenges // Waste Manage. Res. 2011. Vol. 29, № 1. P. 107–121. https://doi.org/10.1177/0734242X10390730  
  6. Kazlauskienė N., Svecevičius G., Marciulioniene D., Montvydiene D., Kesminas V., Staponkus R., Taujanskis E., Sluckaite A. The effect of persistent pollutants on aquatic ecosystem: A complex study // 2012 IEEE/OES Baltic International Symposium (BALTIC). IEEE, 2012. P. 1–6. https://doi.org/10.1109/BALTIC.2012.6249198  
  7. Verla A. W., Verla E. N., Amaobi C. E., Enyoh C. E. Water pollution scenario at river Uramurukwa flowing through Owerri metropolis, Imo state, Nigeria // Int. J. Advanced Sci. Res. 2018. Vol. 3, № 3. P. 40–46.  
  8. Jadia C. D., Fulekar M. H. Phytoremediation of heavy metals: Recent techniques // African J. Biotechnol. 2009. Vol. 8, № 6. P. 921–928.  
  9. Bouwman H. POPs in southern Africa // Persistent Organic Pollutants / ed. H. Fiedler. The Handbook of Environmental Chemistry. Vol. 30. Berlin ; Heidelberg : Springer, 2003. P. 297–320. https://doi.org/10.1007/10751132_11  
  10. Ali S., Abbas Z., Rizwan M., Zaheer I. E., Yavas I., Ünay A., Abdel-Daim M. M., Bin-Jumah M., Hasanuzzaman M., Kalderis D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review // Sustainability (Switzerland). 2020. Vol. 12, № 5. Art. 1927. https://doi.org/10.3390/su12051927  
  11. Tchounwou P. B., Yedjou C. G., Patlolla A. K., Sutton D. J. Heavy metal toxicity and the environment // Molecular, Clinical and Environmental Toxicology. 2012. Vol. 101. P. 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6  
  12. Ashraf S., Ali Q., Zahir Z. Ah., Ashraf S., Asghar H. N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils // Ecotoxicol. Environ. Saf. 2019. Vol. 174. P. 714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068  
  13. Kaledin A. P., Stepanova M. V. Bioaccumulation of trace elements in vegetables grown in various anthropogenic conditions // Foods and Raw Materials. 2023. Vol. 11, № 1. P. 10–16. https://doi.org/10.21603/2308-4057-2023-1-551  
  14. Petrie B., Barden R., Kasprzyk-Horder B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring // Water Res. 2015. Vol. 72. P. 3–27. https://doi.org/10.1016/j.watres.2014.08.053  
  15. Schwarzenbach R. P., Gschwend P. M., Imboden D. M. Environmental organic chemistry. Hoboken, New Jersey : John Wiley & Sons, 2016. 1024 p.  
  16. Petrie B., McAdam E. J., Lester J. N., Cartmell E. Obtaining process mass balances of pharmaceuticals and triclosan to determine their fate during wastewater treatment // Sci. Total Environ. 2014. Vol. 497. P. 553–560. https://doi.org/10.1016/j.scitotenv.2014.08.003  
  17. Hashmi Z., Jatoi A.S., Nadeem S., Anjum A., Imam S. M., Jangda H. Comparative analysis of conventional to biomass-derived adsorbent for wastewater treatment: A review // Biomass Conversion and Biorefinery. 2022. Vol. 14. P. 45–76. https://doi.org/10.1007/s13399-022-02443-y  
  18. Chiang Y. C., Juang R. S. Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review // J. Taiwan Institute Chem. Eng. 2017. Vol. 71. P. 214–234. https://doi.org/10.1016/j.jtice.2016.12.014  
  19. Marques S., Marcuzzo J., Baldan M., Mestre A., Carvalho A. Pharmaceuticals removal by activated carbons: Role of morphology on cyclic thermal regeneration // Chem. Eng. J. 2017. Vol. 321. P. 233–244. https://doi.org/10.1016/j.cej.2017.03.101  
  20. Rodriguez-Narvaez O. M., Peralta-Hernandez J. M., Goonetilleke A., Bandala E. R. Treatment technologies for emerging contaminants in water: A review // Chem. Eng. J. 2017. Vol. 323. P. 361–380. https://doi.org/10.1016/j.cej.2017.04.106  
  21. Xiang Y., Xu Z., Wei Y., Zhou Y., Yang X., Yang Y., Yang J., Zhang J., Luo L., Zhou Z. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors // J. Environ. Manage. 2019. Vol. 237. P. 128–138. https://doi.org/10.1016/j.jenvman.2019.02.068  
  22. Dutta S., Gupta B., Srivastava S. K., Gupta A. K. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review // Materials Advances. 2021. Vol. 2 (14). P. 4497–4531. https://doi.org/10.1039/D1MA00354B  
  23. Кутергин А. С., Недобух Т. А., Никифоров А. Ф., Зенкова К. И., Тарасовских Т. В. Сорбционное извлечение радионуклидов стронция из поверхностных вод природным алюмосиликатом // Водное хозяйство России: проблемы, технологии, управление. 2021. № 4. С. 118–134. https://doi.org/10.35567/1999-4508-2021-4-7  
  24. Gupta R., Pathak D. D. Surface functionalization of mesoporous silica with maltodextrin for efficient adsorption of selective heavy metal ions from aqueous solution // Colloids Surf. A: Physicochemical Eng. Aspects. 2021. Vol. 631. Art. 127695. https://doi.org/10.1016/j.colsurfa.2021.127695  
  25. San Miguel G., Lambert S. D., Graham N. J. D. A practical review of the performance of organic and inorganic adsorbents for the treatment of contaminated waters // J. Chem. Technol. Biotechnol.: Int. Res. in Process, Environ. and Clean Technology. 2006. Vol. 81, № 10. P. 1685–1696. https://doi.org/10.1002/jctb.1600  
  26. Awad A. M., Shaikh S. M., Jalab R., Gulied M. H., Nasser M. S., Benamor A., Adham S. Adsorption of organic pollutants by natural and modified clays: A comprehensive review // Sep. Purif. Technol. 2019. Vol. 228. Art. 115719. https://doi.org/10.1016/j.seppur.2019.115719  
  27. Es-sahbany H., Hsissou R., El Hachimi M. L., Allaoui M., Nkhili S., Elyoubi M. S. Investigation of the adsorption of heavy metals (Cu, Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco) // Mater. Today: Proceedings. 2021. Vol. 45, № 8. P. 7290–7298. https://doi.org/10.1016/j.matpr.2020.12.1100  
  28. Chaukura N., Gwenzi W., Tavengwa N., Manyuchi M. M. Biosorbents for the removal of synthetic organics and emerging pollutants: Opportunities and challenges for developing countries // Environ. Development. 2016. Vol. 19. P. 84–89. https://doi.org/10.1016/j.envdev.2016.05.002  
  29. Sadeek S., Negm N., Hefni H., Abdel Wahab M. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures // Int. J. Boil. Macromol. 2015. Vol. 81. P. 400–409. https://doi.org/10.1016/j.ijbiomac.2015.08.031  
  30. Zeraatkar A. K., Ahmadzadeh H., Talebi A. F., Moheimani N. R., McHenry M. P. Potential use of algae for heavy metal bioremediation, a critical review // J. Environ. Manage. 2016. Vol. 181. P. 817–831. https://doi.org/10.1016/j.jenvman.2016.06.059  
  31. Alekseeva O. V., Bagrovskaya N. A., No skov A. V. The sorption activity of a cellulose–fullerene composite relative to heavy metal ions // Prot. Met. and Physical Chem. Surf. 2019. Vol. 55, № 1. P. 15–20. https://doi.org/10.1134/S2070205119010027  
  32. Дремичева Е. С. Использование торфа и древесных опилок для очистки сточных вод от ионов тяжелых металлов // Вестник Научного центра промышленной и экологической безопасности [Вестник НЦ ВостНИИ]. 2021. № 3. P. 80–91. https://doi.org/10.25558/VOSTNII.2021.74.78.009  
  33. Gorgievski M., Bozić D., Stanković V., Strbac N., Serbula S. Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw // Ecolog. Eng. 2013. Vol. 58. P. 113–122. https://doi.org/10.1016/j.ecoleng.2013.06.025  
  34. Imamoglu M., Yıldız H., Altundag H., Turhan Y. Efficient removal of Cd(II) from aqueous solution by dehydrated hazelnut husk carbon // J. Dispersion Sci. Technol. 2015. Vol. 36, № 2. P. 284–290. https://doi.org/10.1080/01932691.2014.890109  
  35. Jalali M., Aboulghazi F. Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions // J. Mater. Cycles Waste Manage. 2013. Vol. 15. P. 548–555. https://doi.org/10.1007/s10163-012-0096-3  
  36. Priya A. K., Yogeshwaran V., Rajendran S., Hoang T. K. A., Soto-Moscoso M., Ghfar A. A., Bathula Ch. Investigation of mechanism of heavy metals (Cr6+, Pb2+ and Zn2+) adsorption from aqueous medium using rice husk ash: Kinetic and thermodynamic approach // Chemosphere. 2022. Vol. 286, № 3. Art. 131796. https://doi.org/10.1016/j.chemosphere.2021.131796  
  37. Wang J., Chen C. Biosorbents for heavy metals removal and their future // Biotechnol. Adv. 2009. Vol. 27, № 2. P. 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002  
  38. Воронина А. В., Чайкина Т. И., Никифоров А. Ф., Дрикер Б. Н., Вураско А. В., Фролова Е. И. Сорбенты на основе технической целлюлозы для очистки радиоактивно-загрязненных вод и реабилитации природных водоемов // Водное хозяйство России. 2013. № 5. С. 45–53.  
  39. Dremicheva E. S. Problems of pollution of water bodies with oil-containing wastewater of industrial enterprises and options for their solution // Chem. Safety Sci. 2021. Vol. 5, № 1. P. 66–77. https://doi.org/10.25514/CHS.2021.2.20003  
  40. Долгополова О. Н., Худоёрова З. Д. Современные технологии очистки водоемов от нефтезагрязненных донных отложений с использованием геоконтейнеров // Разведка и охрана недр. 2020. № 6. С. 75–76.  
  41. Смоляков Б. С., Ермолаева Н. И., Романов Р. Е., Сагидуллин А. К. Отклик планктонных сообществ на ремедиацию водоема, загрязненного тяжелыми металлами: полевой эксперимент // Вода и экология: проблемы и решения. 2020. № 2 (82). С. 104–113. https://doi.org/10.23968/2305-3488.2020.25.2.104-113  
  42. Патент RU 2437847 C1. Система биологической фильтрации искусственных и природных водоемов / В. В. Ионов, О. А. Ромина. Заявка: 2010134598/05, 19.08.2010, опубл. 27.12.2011.  
  43. Nghiem L. D., Schäfer A. I., Elimelech M. Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms // Environ. Sci. Technol. 2004. Vol. 38. P. 1888–1896. https://doi.org/10.1021/es034952r  
  44. Schäfer A. I., Akanyeti I., Semião A. J. C. Micropollutant sorption to membrane polymers: A review of mechanisms for estrogens // Adv. Colloid Interface Sci. 2011. Vol. 164. Р. 100–117. https://doi.org/10.1016/j.cis.2010.09.006  
  45. Derlon N., Koch N., Eugster B., Posch Th., Pernthaler J., Pronk W., Morgenroth E. Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration // Water Res. 2013. Vol. 47, iss. 6. P. 2085–2095. https://doi.org/10.1016/j.watres.2013.01.033  
  46. Tang X., Xie B., Chen R., Wang J., Huang K., Zhu X., Li G., Liang H. Gravity-driven membrane filtration treating manganese-contaminated surface water: Flux stabilization and removal performance // Chem. Eng. J. 2020. Vol. 397. Р. 125248. https://doi.org/10.1016/j.cej.2020.125248  
  47. Derlon N., Mimoso J., Klein Th., Koetzsch S., Morgenroth E. Presence of biofilms on ultrafiltration membrane surfaces increases the quality of permeate produced during ultra-low pressure gravity-driven membrane filtration // Water Res. 2014. Vol. 60. P. 164–173. https://doi.org/10.1016/j.watres.2014.04.045  
  48. Peter-Varbanets M., Hammes F., Vital M., Pronk W. Stabilization of flux during dead-end ultra-low pressure ultrafiltration // Water Res. 2010. Vol. 44, № 12. P. 3607–3616. https://doi.org/10.1016/j.watres.2010.04.020  
  49. Sofia A., Ng W. J., Ong S. L. Engineering design approaches for minimum fouling in submerged MBR // Desalination. 2004. Vol. 160, № 1. P. 67–74. https://doi.org/10.1016/S0011-9164(04)90018-5  
  50. Guo X., Jiang Sh., Wang Y., Wang Y., Wang J., Huang T., Liang H., Tang X. Effects of pre-treatments on the filtration performance of ultra-low pressure gravity-driven membrane in treating the secondary effluent: Flux stabilization and removal improvement // Sep. Purif. Technol. 2022. Vol. 303. Art. 122122. https://doi.org/10.1016/j.seppur.2022.122122
  51. Zhang X., Ma J., Zheng J., Dai R., Wang X., Wang Zh. Recent advances in nature-inspired antifouling membranes for water purification // Chem. Eng. J. 2022. Vol. 432. Art. 134425. https://doi.org/10.1016/j.cej.2021.134425  
  52. Kim L. H., Lee D., Oh J., Kim S., Chae S.-Ha, Youn D., Kim Y. Performance of a novel granular activated carbon and gravity-driven membrane hybrid process: Process development and removal of emerging contaminants // Process Saf. Environ. Prot. 2022. Vol. 168. P. 810–819. https://doi.org/10.1016/j.psep.2022.10.067  
  53. Caldwell J., Taladriz-Blanco P., Lehner R., Lubskyy A., Diego Ortuso R., Rothen-Rutishauser B., Petri-Fink A. The micro-, submicron-, and nanoplastic hunt: A review of detection methods for plastic particles // Chemosphere. 2022. Vol. 293. Art. 133514. https://doi.org/10.1016/j.chemosphere.2022.133514  
  54. Ansari A. A., Naeem M., Gill S. S., AlZuaibr F. M. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application // The Egyptian J. Aquatic Res. 2020. Vol. 46, № 4. P. 371–376. https://doi.org/10.1016/j.ejar.2020.03.002  
  55. Favas P. J. C., Pratas J., Rodrigues N., D'Souza R., Varun M., Paul M. S. Metal(loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting // Chemosphere. 2018. Vol. 194. P. 158–170. https://doi.org/10.1016/j.chemosphere.2017.11.139  
  56. Vidal C. F., Oliveira J. A., da Silva A. A., Ribeiro C., Farnese F. D. S. Phytoremediation of arsenite-contaminated environments: Is Pistia stratiotes L. a useful tool? // Ecological Indicators. 2019. Vol. 104. P. 794–801. https://doi.org/10.1016/j.ecolind.2019.04.048  
  57. Yadav K. K., Gupta N., Kumar A., Reecec L. M., Singh N., Rezania S., Khan S. A. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects // Ecological Eng. 2018. Vol. 120. P. 274–298. https://doi.org/10.1016/j.ecoleng.2018.05.039  
  58. Agarwal P., Rani R. Strategic management of contaminated water bodies: Omics, genome-editing and other recent advances in phytoremediation // Environ. Technol. Innovation. 2022. Vol. 27. P. 102463. https://doi.org/10.1016/j.eti.2022.102463  
  59. Prasad M. N. Aquatic plants for phytotechnology // Environmental Bioremediation Technologies / eds. S. N. Singh, R. D. Tripathi. Berlin, Heidelberg: Springer, 2007. P. 259–274. https://doi.org/10.1007/978-3-540-34793-4_11  
  60. Koźmińska A., Wiszniewska A., Hanus-Fajerska E., Muszyńska E. Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants // Plant Biotechnol. Rep. 2018. Vol. 12. P. 1–14. https://doi.org/10.1007/s11816-017-0467-2  
  61. Carolin C. F., Kumar P. S., Saravanan A., Joshiba G. J., Naushad Mu. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review // J. Environ. Chem. Eng. 2017. Vol. 5, № 3. P. 2782–2799. https://doi.org/10.1016/j.jece.2017.05.029  
  62. Fasani E. Plants that hyperaccumulate heavy metals // Plants and Heavy Metals / ed. A. Furini. Dordrecht: Springer, Ser. SpringerBriefs in Molecular Science, 2012. P. 55–74. https://doi.org/10.1007/978-94-007-4441-7_3  
  63. Sarma H. Metal hyperaccumulation in plants: A review focusing on phytoremediation technology // J. Environ. Sci. and Tech. 2011. Vol. 4, № 2. P. 118–138.  
  64. Zhang T., Lu Q., Su C., Yang Y., Hu D., Xu Q. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor) // Ecotoxicol. Environ. Saf. 2017. Vol. 143. P. 46–56. https://doi.org/10.1016/j.ecoenv.2017.04.058  
  65. Leao G. A., de Oliveira J. A., Felipe R. T. A., Farnese F. S., Gusman G. S. Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic // J. Plant Int. 2014. Vol. 9. P. 143–151. https://doi.org/10.1080/17429145.2013.784815  
  66. Ekperusi A. O., Sikoki F. D., Nwachukwu E. O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective // Chemosphere. 2019. Vol. 223. P. 285–309. https://doi.org/10.1016/j.chemosphere.2019.02.025  
  67. Prasad M. N., Freitas H. M. Metal hyperaccumulation in plants: Biodiversity prospecting for phytoremediation technology // Electron. J. Biotechnol. 2003. Vol. 6, № 3. P. 285–321. https://doi.org/10.2225/vol6-issue3-fulltext-6  
  68. Upadhyay A. R., Tripathi B. D. Principle and process of biofiltration of Cd, Cr, Co, Ni & Pb from tropical opencast coalmine effluent // Water, Air, and Soil Pollution. 2007. Vol. 180. P. 213–223. https://doi.org/10.1007/s11270-006-9264-1  
  69. Mkandawire M., Dudel E. G. Are Lemna spp. effective phytoremediation agents // Bioremediation, Biodiversity and Bioavailability. 2007. Vol. 1, № 1. P. 56–71.  
  70. Sharma S., Singh B., Manchanda V. K. Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water // Environ. Sci. Pollut. Res. Int. 2015. Vol. 22, № 2. P. 946–962. https://doi.org/10.1007/s11356-014-3635-8  
  71. Bhaskaran K., Nadaraja A.V., Tumbath S., Shah L. B., Puthiya Veetil P. G. Phytoremediation of perchlorate by free floating macrophytes // J. Hazard. Mater. 2013. Vol. 260. P. 901–906. https://doi.org/10.1016/j.jhazmat.2013.06.008  
  72. Liu N., Wu Z. Toxic effects of linear alkylbenzene sulfonate on Chara vulgaris L. // Environ. Sci. Pollution Res. 2018. Vol. 25. P. 4934–4941. https://doi.org/10.1007/s11356-017-0883-4  
  73. Liu Y., Liu N., Zhou Y., Wang F., Zhang Y., Wu Z. Growth and physiological responses in Myriophyllum spicatum L. exposed to linear alkylbenzene sulfonate // Environ. Toxicol. Chem. 2019. Vol. 38, № 9. P. 2073–2081. https://doi.org/10.1002/etc.4475  
  74. Wu Z., Yu D., Li J., Wu G., Niu X. Growth and antioxidant response in Hydrocharis dubis (Bl.) Backer exposed to linear alkylbenzene sulfonate // Ecotoxicology. 2010. Vol. 19. P. 761–769. https://doi.org/10.1007/s10646-009-0453-8  
  75. Khataee A. R. Phytoremediation potential of duckweed (Lemna minor L.) in degradation of CI Acid Blue 92: Artificial neural network modeling // Ecotoxicol. Environ. Saf. 2012. Vol. 80. P. 291–298.  
  76. Neag E., Malschi D., Măicăneanu A. Isotherm and kinetic modelling of Toluidine Blue (TB) removal from aqueous solution using Lemna minor // Int. J. Phytorem. 2018. Vol. 20, № 10. P. 1049–1054. https://doi.org/10.1080/15226514.2018.1460304  
  77. Yaseen D. A., Scholz M. Comparison of experimental ponds for the treatment of dye wastewater under controlled and semi-natural conditions // Environ. Sci. Pollution Res. 2017. Vol. 24. P. 16031–16040. https://doi.org/10.1007/s11356-017-9245-5  
  78. Makarova A., Pishchaeva K., Chelnokov V., Matasov A., Saproshina A., Varbanov P. S. Evaluation of the effectiveness of the use of carbon fibres using salt of ethylenediaminetetraacetic acid for the purification of water bodies from heavy metals // Cleaner Eng. Technol. 2022. Vol. 10. Art. 100549. https://doi.org/10.1016/j.clet.2022.100549  
  79. Newcomb B. A. Processing, structure, and properties of carbon fibres // Composites Part A: Appl. Sci. and Manufacturing. 2016. Vol. 91. P. 262–282. https://doi.org/10.1016/j.compositesa.2016.10.018  
  80. Shalygina T. A., Voronina S. Yu., Voronchikhin V. D., Vlasov A. Yu., Ovchinnikov A. N., Grotskaya N. N. Data for determining the surface properties of carbon fiber in contact interaction with polymeric binders // Data Brief. 2021. Vol. 35. Art. 106847. https://doi.org/10.1016/j.dib.2021.106847  
  81. Saleem M. H., Ali S., Kamran M., Iqbal N., Azeem M., Tariq Javed M., Ali Q., Zulqurnain Haider M., Irshad S., Rizwan M., Alkahtani S., M Abdel-Daim M. Ethylenediaminetetraacetic acid (EDTA) mitigates the toxic effect of excessive copper concentrations on growth, gaseous exchange and chloroplast ultrastructure of Corchorus capsularis L. and improves copper accumulation capabilities // Plants. 2020. Vol. 9, № 6. P. 756. https://doi.org/10.3390/plants9060756  
  82. Zakaria Z., Zulkafflee N. S., Mohd Redzuan N. A., Selamat J., Ismail M. R., Praveena S. M., Tóth G., Abdull Razis A. F. Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks // Plants. 2021. Vol. 10, № 6. P. 1070. https://doi.org/10.3390/plants10061070  
  83. Jia X. Q., Li S. Y., Miu H. J., Yang T., Rao K., Wu D. Y., Cui B. L., Ou J. L., Zhu Z. C. Carbon nanomaterials: A new sustainable solution to reduce the emerging environmental pollution of turbomachinery noise and vibration // Front. Chem. 2020. Vol. 8. Art. 683. https://doi.org/10.3389/fchem.2020.00683  
  84. Sinha R. K., Herat S., Tandon P. K. Phytoremediation: Role of plants in contaminated site management // Environmental Bioremediation Technologies / eds. S. N. Singh, R. D. Tripathi. Berlin, Heidelberg: Springer, 2007. P. 315–330. https://doi.org/10.1007/978-3-540-34793-4_14  
  85. Obinna I. B., Ebere E. C. Phytoremediation of polluted waterbodies with aquatic plants: Recent progress on heavy metal and organic pollutants // Anal. Methods in Environ. Chem. J. 2019. Vol. 2. P. 66–104. https://doi.org/10.24200/amecj.v2.i03.66  
  86. Tangahu B. V., Abdullah S. R. S., Basri H., Idris M., Anuar N., Mukhlisin M. A Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation // Int. J. Chem. Eng. 2011. Vol. 31. Art. 939161. https://doi.org/10.1155/2011/939161  
  87. Erdei L. Phytoremediation as a program for decontamination of heavy metal polluted environment // Acta Biologica Szegediensis. 2005. Vol. 49, № 1-2. P. 75–76.  
  88. DalCorso G., Fasani E., Manara A., Visioli G., Furini A. Heavy metal pollutions: State of the art and innovation in phytoremediation // Int. J. Mol. Sci. 2019. Vol. 20, № 14. P. 3412. https://doi.org/10.3390/ijms20143412  
  89. Bi R., Zhou C., Jia Y., Wang S., Li P., Reichwaldt E. S., Liu W. Giving waterbodies the treatment they need: A critical review of the application of constructed floating wetlands // J. Environ Manage. 2019. Vol. 238. P. 484–498. https://doi.org/10.1016/j.jenvman.2019.02.064  
  90. Pavlidis G., Zotou I., Karasali H., Marousopoulou A., Bariamis G., Nalbantis I., Tsihrintzis V. A. Experiments on pilot-scale constructed floating wetlands efficiency in removing agrochemicals // Toxics. 2022. Vol. 10, № 12. Art. 790. https://doi.org/10.3390/toxics10120790  
  91. Stefani G., Tocchetto D., Salvato M., Borin M. Performance of a floating treatment wetland for in-stream water amelioration in NE Italy // Hydrobiologia. 2011. Vol. 674. P. 157–167. https://doi.org/10.1007/s10750-011-0730-4  
  92. Billore S., Prashant K., Sharma J. K. Restoration and conservation of stagnant water bodies by gravel-bed treatment wetlands and artificial floating reed beds in tropical India // Proceedings of Taal2007: The 12th World Lake Conference / eds. M. Sengupta, R. Dalwani. Jaipur, India, 2008. P. 981–987.  
  93. Jyoti D., Sinha R., Faggio C. Advances in biological methods for the sequestration of heavy metals from water bodies: A review // Environ. Toxicol. Pharmacol. 2022. Vol. 94. Art. 103927. https://doi.org/10.1016/j.etap.2022.103927  
  94. Cui E., Zhou Zh., Gao F., Chen H., Li J. Roles of substrates in removing antibiotics and antibiotic resistance genes in constructed wetlands: A review // Sci. Total Environ. 2023. Vol. 859. Art. 160257. https://doi.org/10.1016/j.scitotenv.2022.160257  
  95. Arumugam N., Chelliapan S., Kamyab H., Thirugnana S., Othman N., Nasri N. S. Treatment of wastewater using seaweed: A review // Int. J. Environ. Res. Public Health. 2018. Vol. 15, № 12. Art. 2851. https://doi.org/10.3390/ijerph15122851  
  96. Guzmán-Fierro V., Arriagada C., José Gallardo J., Campos V., Roeckel M. Challenges of aerobic granular sludge utilization: Fast start-up strategies and cationic pollutant removal // Heliyon. 2023. Vol. 9, № 2. Art. e13503. https://doi.org/10.1016/j.heliyon.2023.e13503  
  97. Ahmed M., Zhou J., Ngo H., Guo W., Thomaidis N., Xu J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review // J. Hazardous Materials. 2017. Vol. 323, part A. P. 274–298. https://doi.org/10.1016/j.jhazmat.2016.04.045  
  98. Бикташева Л. Р., Селивановская С. Ю., Мухтарова Р. А., Абдалджалил Х., Галицкая П. Ю. Некоторые характеристики микробного сообщества пластовых флюидов Ромашкинского месторождения // Учен. зап. Казан. ун-та. Сер. Естеств. науки. 2022. Т. 164, кн. 2. С. 263–278. https://doi.org/10.26907/2542-064X.2022.2.263-278  
  99. Zhang T., Zhang H. Microbial consortia are needed to degrade soil pollutants // Microorganisms. 2022. Vol. 10, № 2. Art. 261. https://doi.org/10.3390/microorganisms10020261  
  100. Bilal M., Iqbal H. M. N. Persistence and impact of steroidal estrogens on the environment and their laccase-assisted removal // Sci. Total Environ. 2019. Vol. 690. P. 447–459. https://doi.org/10.1016/j.scitotenv.2019.07.025  
  101. Bilal M., Iqbal H. M. N., Barceló D. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems // Sci. Total Environ. 2019. Vol. 695. Art. 133896. https://doi.org/10.3390/ toxics10120790 10.1016/j.scitotenv.2019.13
  102. Zdarta J., Meyer A.S., Jesionowski T., Pinelo M. Developments in support materials for immobilization of oxidoreductases: A comprehensive review // Adv. Colloid Interface Sci. 2018. Vol. 258. P. 1–20. https://doi.org/10.1016/j.cis.2018.07.004  
  103. Alneyadi A. H., Rauf M. A., Ashraf S. S. Oxidoreductases for the remediation of organic pollutants in water – a critical review // Crit. Rev. Biotechnol. 2018. Vol. 38. P. 971–988. https://doi.org/10.1080/07388551.2017.1423275  
  104. Zdarta J., Meyer A.S., Jesionowski T., Pinelo M. Multifaceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review // Biotechnol. Adv. 2019. Vol. 37. Art. 107401. https://doi.org/10.1016/j.biotechadv.2019.05.007  
  105. Bilal M., Rasheed T., Iqbal H. M. N., Yan Y. Peroxidases-assisted removal of environmentally-related hazardous pollutants with reference to the reaction mechanisms of industrial dyes // Sci. Total Environ. 2018. Vol. 644. P. 1–13. https://doi.org/10.1016/j.scitotenv.2018.06.274  
  106. Geissen V., Mol H., Klumpp E., Umlauf G., Nadal M., Ploeg M., Zee S., Ritsema C. J. Emerging pollutants in the environment: A challenge for water resource management // Int. Soil Water Conserv. Res. 2015. Vol. 3. P. 57–65. https://doi.org/10.1016/j.iswcr.2015.03.002  
  107. Morsi R., Bilal M., Iqbal H. M. N., Ashraf S. S. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants // Sci. Total Environ. 2020. Vol. 714. Art. 136572. https://doi.org/10.1016/j.scitotenv.2020.136572  
  108. Battistuzzi G., Bellei M., Bortolotti C. A., Sola M. Redox properties of heme peroxidases // Arch. Biochem. Biophys. 2010. Vol. 500. P. 21–36. https://doi.org/10.1016/j.abb.2010.03.002  
  109. Chiong T., Lau S. Y., Lek Z. H., Koh B. Y., Danquah M. K. Enzymatic treatment of methyl orange dye in synthetic wastewater by plant-based peroxidase enzymes // J. Environ. Chem. Eng. 2016. Vol. 4. P. 2500–2509. https://doi.org/10.1016/j.jece.2016.04.030  
  110. Babu D. S., Srivastava V., Nidheesh P. V., Kumar M. S. Detoxification of water and wastewater by advanced oxidation processes // Sci. Total Environ. 2019. Vol. 696. Art. 133961. https://doi.org/10.1016/j.scitotenv.2019.133961  
  111. Quiñones D. H., Álvarez P. M., Rey A., Beltrán F. J. Removal of emerging contaminants from municipal WWTP secondary effluents by solar photocatalytic ozonation. A pilot-scale study // Separation and Purification Technol. 2015. Vol. 149. P. 132–139. https://doi.org/10.1016/j.seppur.2015.05.033  
  112. Haag W. R., Yao C. C. D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants // Environ. Sci. Technol. 1992. Vol. 26, № 5. P. 1005–1013.  
  113. Kanakaraju D., Glass B. D., Oelgemöller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review // J. Environ Manage. 2018. Vol. 219. P. 189–207. https://doi.org/10.1016/j.jenvman.2018.04.103  
  114. Ramírez-Malule H., Quiñones-Murillo D. H., Manotas-Duque D. Emerging contaminants as global environmental hazards. A bibliometric analysis // Emerging Contaminants. 2020. Vol. 6. P. 179–193. https://doi.org/10.1016/j.emcon.2020.05.001  
  115. Coronado J. M., Fresno F., Hernández-Alonso M., Portela R. The Keys of Success: TiO2 as a Benchmark Photocatalyst // Design of Advanced Photocatalytic Mater. for Energy and Environ. Applications. Green Energy and Technology. London: Springer, 2013. P. 85–101.  
  116. Cassano A. E., Alfano O. M. Reaction engineering of suspended solid heterogeneous photocatalytic reactors // Catalysis today. 2000. Vol. 58, № 2-3. P. 167–197.  
  117. Rey A., Quinones D. H., Álvarez P. M., Beltrán F. J., Plucinski P. K. Simulated solar-light assisted photocatalytic ozonation of metoprolol over titania-coated magnetic activated carbon // Appl. Catal. B: Environmental. 2012. Vol. 111. P. 246–253. https://doi.org/10.1016/j.apcatb.2011.10.005  
  118. Quiñones-Murillo D. H., Ariza-Reyes A. A., Ardila-Vélez L. J. Some kinetic and synergistic considerations on the oxidation of the azo compound Ponceau 4R by solar-mediated heterogeneous photocatalytic ozonation // Desalination and Water Treatment. 2019. Vol. 170. P. 61–74. https://doi.org/10.5004/dwt.2019.24711  
  119. Canizares P., Paz R., Sáez C., Rodrigo M. A. Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes // J. Environ. Manag. 2009. Vol. 90, № 1. P. 410–420. https://doi.org/10.1016/j.jenvman.2007.10.010  
  120. Inchaurrondo N. S., Font Clay J. Zeolite and oxide minerals: Natural catalytic materials for the ozonation of organic pollutants // Molecules. 2022. Vol. 27, № 7. Art. 2151. https://doi.org/10.3390/molecules27072151  
  121. Foka-Wembe E. N., Benghafour A., Dewez D., Azzouz A. Clay-catalyzed ozonation of organic pollutants in water and toxicity on Lemna minor: Effects of molecular structure and interactions // Molecules. 2022. Vol. 28, № 1. Art. 222. https://doi.org/10.3390/molecules28010222  
  122. Mirzaei A., Chen Z., Haghighat F., Yerushalmi L. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes – a review // Chemosphere. 2017. Vol. 174. P. 665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019  
  123. Ni Y., Zhou Ch., Xing M., Zhou Y. Oxidation of emerging organic contaminants by in situ H2O2 fenton system // Green Energy and Environ. 2024. Vol. 9, iss. 3. P. 417–434. https://doi.org/10.1016/j.gee.2023.01.003  
  124. Zhou Z., Liu X., Sun K., Lin C., Ma J., He M., Ouyang W. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review // Chem. Eng. J. 2019. Vol. 372. P. 836–851. https://doi.org/10.1016/j.cej.2019.04.213  
  125. Shiying Y., Ping W., Xin Y., Guang W.E., Zhang W., Liang S. H. A novel advanced oxidation process to degrade organic pollutants in waste water: Microwave-activated persulfate oxidation // J. Environ. Sci. 2009. Vol. 21, № 9. P. 1175–1180. https://doi.org/10.1016/s1001-0742(08)62399-2  
  126. Tan C., Gao N., Deng Y., An N., Deng J. Heat-activated persulfate oxidation of diuron in water // Chem. Eng. J. 2012. Vol. 203. P. 294–300. https://doi.org/10.1016/j.cej.2012.07.005  
  127. Torres-Palma R. A., Serna-Galvis E. A. Sonolysis // Advanced oxidation processes for waste water treatment: Emerging green chemical technology / eds. S. A. Ameta, R. Ameta. Elsevier, Academic press, 2018. P. 177–213. https://doi.org/10.1016/B978-0-12-810499-6.00007-3  
  128. Huerta-Fontela M., Galceran M. T., Ventura F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment // Water Res. 2011. Vol. 45. P. 1432–1442. https://doi.org/10.1016/j.watres.2010.10.036  
  129. Suarez S., Lema J. M., Omil F. Pre-treatment of hospital wastewater by coagulation–flocculation and flotation // Bioresour. Technol. 2009. Vol. 100. P. 2138–2146. https://doi.org/10.1016/j.biortech.2008.11.015  
  130. Adams C., Wang Y., Loftin K., Meyer M. Removal of antibiotics from surface and distilled water in conventional water treatment processes // J. Environ. Eng. 2002. Vol. 128. P. 253–260. https://doi.org/10.1061/(asce)0733-9372(2002)128:3(253)  
  131. Zhou J., Jia Y., Liu H. Coagulation/flocculation-flotation harvest of Microcystis aeruginosa by cationic hydroxyethyl cellulose and Agrobacterium mucopolysaccharides // Chemosphere. 2023. Vol. 313. Art. 137503. https://doi.org/10.1016/j.chemosphere.2022.137503  
  132. Peydayesh M., Suta T., Usuelli M., Handschin S., Canelli G., Bagnani M., Mezzenga R. Sustainable removal of microplastics and natural organic matter from water by coagulation-flocculation with protein amyloid fibrils // Environ. Sci. Technol. 2021. Vol. 55, № 13. P. 8848–8858. https://doi.org/10.1021/acs.est.1c01918  
  133. Kaur I., Batra V., Kumar Reddy Bogireddy N., Torres Landa S. D., Agarwal V. Detection of organic pollutants, food additives and antibiotics using sustainable carbon dots // Food Chemistry. 2023. Vol. 406. Art. 135029. https://doi.org/10.1016/j.foodchem.2022.135029
Поступила в редакцию: 
16.08.2024
Принята к публикации: 
02.04.2025
Опубликована: 
30.06.2025
Краткое содержание:
(загрузок: 205)