Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Puzanov D. A., Sklyar A. E., Konenkova M. V., Krivenko A. P. Transformations of substituted cyanoiminooctahydroquinazolines under oxidation conditions. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 3, pp. 299-307. DOI: 10.18500/1816-9775-2023-23-3-299-307, EDN: UTDGYI

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 71)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
547.875
EDN: 
UTDGYI

Transformations of substituted cyanoiminooctahydroquinazolines under oxidation conditions

Autors: 
Puzanov Daniil A., Saratov State University
Sklyar Anna E., Saratov State University
Konenkova Marina V., Saratov State University
Krivenko Adel P., Saratov State University
Abstract: 

Substituted quinazolines of various degrees of saturation and functionalization possess a wide spectrum of biological activity, in particular, anticancer activity, which predetermines the importance of obtaining new representatives of this type of compounds and studying their practically useful properties. Methods for the preparation of 2-cyanoiminoquinazolines are poorly described in the literature, while their properties and oxidation reactions have not been studied at all. We have analyzed the stability of tautomeric forms of 2-cyanoiminoquinazolines, determined the activation energy of their formation using quantum-chemical calculations, studied their transformation under the action of strong oxidants (CrO3/AcOH, NaNO2/AcOH). Selective aromatization of the azoheterocycle and hydrolysis of the -CN-group to form 2-aminocarbamoylquinazoline occurred during oxidation. An increase in temperature from 120 to 160° C (using CrO3) resulted in the formation of 2-nitrosoquinazoline. The structure of our new obtained substances was established by spectral methods (IR, 1H, 13C NMR, HSQC, NOESY), a scheme of their formation has been proposed.

Reference: 
  1. Li S.-G., Wang K.-B., Gong C., Bao Y., Qin N.-B. Cytotoxic quinazoline alkaloids from the seeds of Peganum harmala // Bioorganic & Medicinal Chemistry Letters. 2018. Vol. 28, № 2. P. 103–106. https://doi.org/10.1016/j.bmcl.2017.12.003
  2. Olesen U. H., Christensen M. K., Björkling F., Jäättelä M., Jensen P. B., Sehested M., Nielsen S. J. Anticancer agent CHS-828 inhibits cellular synthesis of NAD // Biochemical and Biophysical Research Communications. 2008. Vol. 367, № 4. P. 799–804. https://doi.org/10.1016/j.bbrc.2008.01.019
  3. Chern J.-H., Shia K.-S., Chang C.-M., Lee C.-C., Lee Y.-C., Tai C.-L., Tseng H.-Y. Synthesis and in vitro cytotoxicity of 5-substituted 2-cyanoimino-4-imidazodinone and 2-cyanoimino-4-pyrimidinone derivatives // Bioorganic & Medicinal Chemistry Letters. 2004. Vol. 14, № 5. P. 1169 –1172. https://doi.org/10.1016/j.bmcl.2003.12.073
  4. Amr A., Elsayed E., Al-Omar M., Badr Eldin H., Nossier E., Abdallah M. Design, Synthesis, Anticancer Evaluation and Molecular Modeling of Novel Estrogen Derivatives // Molecules. 2019. Vol. 24, № 3. P. 416. https://doi.org/10.3390/molecules24030416
  5. Swaminathan Sivagami , Rengarajan Kavitha, Sasikurba Satanathan, Jegathalaprathaban Rajesh. Multicomponent one-pot synthesis, characterization and antimicrobial screening of 2 cyanoimino-6-aryl4-(6-methoxynaphthalen-2-yl)-3,4-dihydro-1H-pyrimidines // Process Biochemistry. 2022. Vol. 123. P. 63–69. https://doi.org/10.1016/j.procbio.2022.10.032
  6. Solovyev P. A., Shutalev A. D. Synthesis and oxidative aromatization of 5-acetyl-2-cyanoimino-6-methyl4-phenyl-1, 2, 3, 4-tetrahydropyrimidine with manganese dioxide // Chemistry of Heterocyclic Compounds. 2009. Vol. 45, iss. 7. P. 809–814. https://doi.org/10.1007/s10593-009-0357-9
  7. Moustafa A. H., Shestakov A. S., Shikhaliev Kh. S. One-pot synthesis of 4aryl-2-cyanoimino-3, 4-dihydro-1H-pyrimidines and their reactions // Chemistry of Heterocyclic Compounds. 2012. Vol. 48, № 4. P. 613–619. https://doi.org/10.1007/s10593-012-1034-y
  8. Скляр А. Е., Пузанов Д. А. Синтез и строение 2-цианоиминогидрохиназолинов на основе N-цианогуанидина и карбонильных соединений // Ломоносов-2022: материалы Международной научной конференции студентов, аспирантов и молодых учёных. Секция «Химия». М. : Перо, 2022. С. 593.
  9. Prakash N., Elamaran M., Ingarsal N. A new approach to the synthesis of cyanamide: 2-cyanoimino-4-aryl6-(naphthalen-2-yl)-3, 4-dihydro1hpyrimidines and their antimicrobial screening // Chemical Science Transactions. 2015. Vol. 4 (4). P. 947–954.
  10. Moustafa A. H., Shestakov A. S., Shikhaliev K. S. One-pot synthesis of 4-aryl-2-cyanoimino-3,4-dihydro-1H-pyrimidines and their reactions // Chemistry of Heterocyclic Compounds. 2012. Vol. 48, № 4. P. 613–619. https://doi.org/10.1007/s10593-012-1034-y
  11. Матикенова А. А., Кривенько А. П. Превращения азолоцикланопиримидинов под действием окислителей // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2014. Т. 14, вып. 1. С. 29–32.
Received: 
19.05.2023
Accepted: 
31.05.2023
Published: 
29.09.2023
Short text (in English):
(downloads: 23)