Izvestiya of Saratov University.

Chemistry. Biology. Ecology

ISSN 1816-9775 (Print)
ISSN 2541-8971 (Online)


For citation:

Shipenok X. M., Shipovskaya A. B. Structure and supramolecular ordering of chitosan L- and D-aspartates. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2023, vol. 23, iss. 4, pp. 411-425. DOI: 10.18500/1816-9775-2023-23-4-411-425, EDN: IVZQCS

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 103)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
547.458.1:[543.42+544.022]
EDN: 
IVZQCS

Structure and supramolecular ordering of chitosan L- and D-aspartates

Autors: 
Shipenok Xenia M., Saratov State University
Shipovskaya Anna B., Saratov State University
Abstract: 

Chitosan (CS) with a viscosity-average molecular weight of 200 kDa and a deacetylation degree of 82 mol%, produced by Bioprogress Ltd. (RF) has been used in this work. Aqueous solutions of enantiomeric salt complexes of CS with L- and D-aspartic acid (AspA) have been obtained at an equimolar CS:AspA ratio, in terms of amino groups. Powders of CS·L-(D-) AspA salts have been isolated from the corresponding solutions by evaporation of water and stored in a desiccator at zero humidity. It has been established that under such conditions a water-soluble salt form of the polymer with lamellar light beige particles 0.05–1.0 mm in size is formed. Using the methods of elemental analysis, IR and NMR spectroscopy, and X-ray diff ractometry, the chemical interaction of CS with L-(D-)AspA in aqueous solution and condensed state has been evaluated, and the chemical structure and supramolecular ordering of these enantiomeric salts have been studied. It has been established that, according to the classifi cation of K. Ogawa et al., the formula unit CS·L-(D-)AspA corresponds to non-hydrated salts of type I, in which water molecules are replaced by acid anions. IR spectroscopy confi rmed the donor--acceptor polymer–acid interaction and revealed a developed system of intermolecular and intramolecular contacts. One- and two-dimensional NMR spectroscopy showed the interaction of pairs of atomic nuclei between H3–H6 of the polymer and 2Hβ or Hα of the acid, H1 or H2 and Hα, H1 and H3–H6, due to the spatial proximity of protons in repeating monomer units, in the “bend” chain segments removed along the chain, and in neighboring macromolecules. For CS·L-AspA, additional resonances have been identifi ed between H2 and H3–H6 of the polymer, for CS·D-AspA these have been between H1 or H2. X-ray diff ractometry has revealed a highly ordered orientation of macrochains and a high crystallinity degree, untypical for CS salts. The salt complex CS·D-AspA, in contrast to CS·L-AspA, is characterized by a smaller amount of crystallization water, a more ordered supramolecular structure, and a more developed system of intermolecular and intramolecular contacts.

Reference: 
  1. Kou S. G., Peters L., Mucalo M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms // Carbohydrate Polymers. 2022. Vol. 282. ID 119132. https://doi. org/10.1016/j.carbpol.2022.119132
  2. Варламов В. П., Ильина А. В., Шагдарова Б. Ц., Луньков А. П., Мысякина И. С. Хитин/хитозан и его производные: Фундаментальные и прикладные аспекты // Успехи биологической химии. 2020. Т. 60. С. 317–368.
  3. Sajomsang W., Tantayanon S., Tangpasuthadol V., Daly W. H. Quaternization of N-aryl chitosan derivatives: synthesis, characterization, and antibacterial activity // Carbohydrate Research. 2009. Vol. 344, № 18. P. 2502‒2511. https://doi.org/10.1016/j.carres.2009. 09.004
  4. Xie Y., Liu X., Chen Q. Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity // Carbohydrate Polymers. 2007. Vol. 69. P. 142–147.
  5. Ogawa K., Yui T., Okuyama K. Three D structures of chitosan // International Journal of Biological Macromolecules. 2004. Vol. 34, № 1-2. P. 1–8. https://doi.org/10.1016/j.ijbiomac.2003.11.002
  6. Ogawa Y., Naito P.-K., Nishiyama Y. Hydrogen-bonding network in anhydrous chitosan from neutron crystallography and periodic density functional theory calculations // Carbohydrate Polymers. 2019. Vol. 207. P. 211–217. https://doi.org/10.1016/j.carbpol.2018.11.04
  7. Kawahara M., Yui T., Oka K., Zugenmaier P., Suzuki S., Kitamura S., Okuyama K., Ogawa K. Fourth 3D Structure of the Chitosan Molecule: Conformation of Chitosan in Its Salts with Medical Organic Acids Having a Phenyl Group // Bioscience, Biotechnology, and Biochemistry. 2003. Vol. 67, № 7. P. 1545–1550. https://doi.org/10.1271/ bbb.67.1545
  8. Хакимова А. А., Поминов В. В., Бабичева Т. С., Шмаков С. Л., Захаревич А. М., Шиповская А. Б. Применение ПЭМ для изучения микро- и наносфер хитозана, полученных их его солей с разными кислотами // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15, № 3.3. С. 381−385. https://doi.org/10.18721/JPM.153.375
  9. Селиванова Н. М., Зимина М. В., Галяметдинов Ю. Г. Фазовое поведение хитозана в органических кислотах // Жидкие кристаллы и их практическое использование. 2019. T. 19, № 3. C. 76−82.
  10. Li Q., Song B., Yang Z., Fan H. Electrolytic conductivity behaviors and solution conformations of chitosan in different acid solutions // Carbohydrate Polymers. 2006. Vol. 63, № 2. P. 272−282. https://doi.org/10.1016/j.carbpol.2005.09.024
  11. Singh J., Dutta P. K. Preparation, circular dichroism induced helical conformation and optical property of chitosan acid salt complexes for biomedical applications // International Journal of Biological Macromolecules. 2009. Vol. 45, № 4. P. 384–392. https://doi. org/10.1016/j.ijbiomac.2009.07.004
  12. Sekar V., Rajendran K., Vallinayagam S., Deepak V., Mahadevan S. Synthesis and characterization of chitosan ascorbate nanoparticles for therapeutic inhibition for cervical cancer and their in silico modeling // International Journal of Biological Macromolecules. 2018. Vol. 62. P. 239. https://doi.org/10.1016/j.ijbiomac.2009.07.004
  13. Endres M. B., Weichold O. Sorption-active transparent fi lms based on chitosan // Carbohydrate Polymers. 2019. Vol. 208. P. 108−114. https://doi.org/10.1016/j.carbpol.2018.12.031
  14. Pigaleva M. A., Portnov I. V., Rudov A. A., Blagodatskikh I. V., Grigoriev T. E., Gallyamov M. O., Potemkin I. I. Stabilization of chitosan aggregates at the nanoscale in solutions in carbonic acid // Macromolecules. 2014. Vol. 47, № 16. P. 5749−5758. https://doi.org/10.1021/ma501169c
  15. Kawada J., Yui T., Abe Y., Ogawa K. Crystalline features of chitosan-L-and D-lactic acid salts // Bioscience, Biotechnology, and Biochemistry. 1998. Vol. 62, № 4. P. 700–704. https://doi.org/10.1271/bbb.62.700
  16. Малинкина О. Н., Журавлёва Ю. Ю., Шиповская А. Б. Ранозаживляющая активность in vivo глицерогидрогелевых пластин на основе аскорбата хитозана, алоэ вера и полиолата кремния // Прикладная биохимия и микробиология. 2022. Т. 58, № 2. С. 179–184. https://doi.org/10.31857/S0555109922020143
  17. Шиповская А. Б., Малинкина О. Н., Гегель Н. О., Зудина И. В., Луговицкая Т. Н. Структура и свойства солевых комплексов хитозана с диастереомерами аскорбиновой кислоты // Известия Академии наук. Серия химическая. 2021. № 9. С. 1765–1774. https://doi.org/10.1007/s11172-021-3281-5
  18. Гегель Н. О., Зудина И. В., Малинкина О. Н., Шиповская А. Б. Влияние изомерной формы аскорбиновой кислоты на антибактериальную активность её солей с хитозаном // Микробиология. 2018. T. 87, № 5. С. 618–623. https://doi.org/10.1134/S0026365618050105
  19. Gegel N. O., Zhuravleva Y. Y., Shipovskaya A. B., Malinkina O. N., Zudina I. V. Infl uence of chitosan ascorbate chirality on the gelation kinetics and properties of silicon-chitosan-containing glycerohydrogels // Polymers. 2018. Vol. 10, № 3. ID 259. https://doi.org/10.3390/polym10030259
  20. Ayon N. J. Features, roles and chiral analyses of proteinogenic amino acids // AIMS Molecular Science. 2020. Vol. 7, iss. 3. P. 229–268. https://doi.org/10.3934/ molsci.202001
  21. Lee Tu, Lin Yu K. The origin of life and the crystallization of aspartic acid in water // Crystal Growth & Design. 2010. Vol. 10, № 4. P. 1652–1660. https://doi.org/10.1021/cg901219f
  22. Червяков А. В., Захарова М. Н., Пестов Н. Б. Роль D-аминокислот в патогенезе нейродегенеративных заболеваний и при нормальном старении // Анналы клинической и экспериментальной неврологии. 2014. Т. 8, № 2. C. 51–58.
  23. Wang J., Wang J., Liu J., Wang S., Pei J. Solubility of D-aspartic acid and L-aspartic acid in aqueous salt solutions from (293 to 343) K // Journal of Chemical & Engineering Data. 2010. Vol. 55, № 4. P. 1735–1738. https://doi.org/10.1021/je9007102
  24. Sang-Aroon W., Ruangpornvisuti V. Determination of aqueous acid-dissociation constants of aspartic acid using PCM/DFT method // International Journal of Quantum Chemistry. 2008. Vol. 108, № 6. P. 1181–1188. https://doi.org/10.1002/qua.21569
  25. Apelblat A., Manzurola E., Orekhova Z. Electrical conductance studies in aqueous solutions with aspartic ions // Journal of Solution Chemistry. 2008. Vol. 37. P. 97–105. https://doi.org/10.1007/s10953-007-9223-5
  26. Derissen J. L., Endeman H. J., Peerdeman A. F. The crystal and molecular structure of L-aspartic acid // Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 1968. Vol. 24, № 10. P. 1349–1354. https://doi.org/10.1107/S0567740868004280
  27. Луговицкая Т. Н., Шиповская А. Б. Физико-химические свойства водных растворов L-аспарагиновой кислотыс добавкой хитозана // Журнал общей химии. 2017. Т. 87, № 4. С. 650‒656.
  28. Lugovitskaya T. N., Shipovskaya A. B., Shmakov S. L., Shipenok X. M. Formation, structure, properties of chitosan aspartate and metastable state of its solutions for obtaining nanoparticles // Carbohydrate Polymers. 2022. Vol. 277. ID 118773. https://doi.org/10.1016/j.carbpol.2021.118773
  29. Lugovitskaya T. N., Shipovskaya A. B., Shipenok X. M. Kinetic instability of a chitosan – aspartic acid – water system as a method for obtaining nano- and microparticle // Chimica Techno Acta. 2021. Vol. 8, iss. 4. ID 20218405. https://doi.org/10.15826/chimtech.2021.8.4.05
  30. Singh J., Dutta P. K. Preparation, circular dichroism induced helical conformation and optical property of chitosan acid salt complexes for biomedical applications // International Journal of Biological Macromolecules. 2009. Vol. 45, iss. 4. P. 384‒392. https://doi.org/10.1016/j.ijbiomac.2009.07.004
  31. Луговицкая Т. Н., Зудина И. В., Шиповская А. Б. Получение и свойства аспарагиновокислых растворов хитозана // Журнал прикладной химии. 2020. Т. 93, вып. 1. С. 90‒99. https://doi.org/10.31857/ S0044461820010090
  32. Shipovskaya A., Shipenok X., Lugovitskaya T., Babicheva T. Self-assembling nano- and microparticles of chitosan L- and D-aspartate: Preparation, structure, and biological activity // Materials Proceedings. 2023. Vol. 14, iss. 1. ID 31. https://doi.org/10.3390/IOCN2023- 14492
  33. Santos Z. M., Caroni A. L. P. F., Pereira M. R., da Silva D. R., Fonseca J. L. C. Determination of deacetylation degree of chitosan: A comparison between conductometric titration and CHN elemental analysis // Carbohydrate Research. 2009. Vol. 344. P. 2591–2595. https://doi.org/10.1016/j.carres.2009.08.030
  34. Тарасевич Б. Н. ИК-спектры основных классов органических соединений. Справочные материалы. М. : Изд-во МГУ, 2012. 55 c.
  35. Комаров Б. А., Малков Г. В., Васильев С. Г., Баскаков С. А., Эстрина Г. А., Гурьева Л. Л., Волков В. И., Фролова М. А., Албулов А. И. Окислительная деструкция хитозана и его стабильность // Высокомолекулярные соединения. Серия Б. 2019. T. 61, № 2. С. 132–143. https://doi.org/10.1134/S2308113919020037
  36. Kumirska J., Czerwicka M., Kaczyński Z., Bychowska A., Brzozowski K., Thöming J., Stepnowski P. Application of spectroscopic methods for structural analysis of chitin and chitosan // Marine Drugs. 2010. Vol. 8, iss. 5. P. 1567–1636. https://doi.org/10.3390/md8051567
  37. Shipovskaya A. B., Shmakov S. L., Gegel N. O. Optical activity anisotropy of chitosan-based fi lms // Carbohydrate Polymers. 2019. Vol. 206. P. 476–486. https://doi.org/10.1016/j.carbpol.2018.11.026
  38. Могилевская Е. Л., Акопова Т. А., Зеленецкий А. Н., Озерин А. Н. О кристаллической структуре хитина и хитозана // Высокомолекулярные соединения. Серия А. 2006. Т. 48, № 2. С. 216–226.
  39. Дресвянина Е. Н., Гребенников С. Ф., Добровольская И. П., Масленникова Т. П., Иванькова Е. М.,  Юдин В. Е. Влияние нанофибрилл хитина на сорбционные свойства композиционных пленок на основе хитозана // Высокомолекулярные соединения. Серия А. 2020. Т. 62, № 3. С. 181–188. https://doi.org/10.31857/S2308112020030050
  40. Агеев Е. П., Вихорева Г. А., Зоткин М. А., Матушкина Н. Н., Герасимов В. И., Зезин С. Б., Оболонкова Е. С. Структура и транспортные свойства хитозановых пленок, модифицированных термообработкой // Высокомолекулярные соединения. Серия А. 2004. Т. 46, № 12. С. 2035‒2041.
Received: 
14.09.2023
Accepted: 
27.09.2023
Published: 
25.12.2023
Short text (in English):
(downloads: 53)